搜索资源列表
PEG_LDPC.rar
- 引入PEG(Progressive-edge-growth)算法来构造适合线性时间编码的LDPC校验矩阵,译码时采用简化最小和Min-Sum译码算法实现简化译码.仿真结果表明,该方法能够构造适合LDPC码的线性时间编码的下三角校验矩阵日,并且用此方法构造的LDPC码性能非常接近原来PEG算法构造的LDPC码.同时通过采用最小和Min-Sum算法降低译码复杂度.,The introduction of PEG (Progressive-edge-growth) algorithm to const
LDPC_cooperation
- 给出了用matlab实现LDPC码协作通信的程序,其中LDPC码用PEG算法构造,并给出了相应的文章。-Given LDPC codes using matlab to achieve collaborative communication procedures which LDPC codes constructed with the PEG algorithm, and gives the corresponding article.
LDPC_H_Construction
- LDPC码H矩阵构造的三种尝试,包括比特填充法、PEG法和近似最短环路法(ACE)的实践-This document includes three methods to implement LDPC H matrix construction. Please enjoy them!
peg1
- ldpc的peg算法消除四环,尽量只存在六环-the peg algorithms ldpc
PEG
- PEG算法,在MatLab可直接用。 -PEG algorithm can be directly used in MatLab. PEG algorithm can be directly used in MatLab.
ldpc
- 基于PEG算法的准循环LDPC码构造方法研究-PEG algorithm based on quasi-cyclic LDPC code construction methods
PEG
- 用PEG构造法生成LDPC监督矩阵的程序-With PEG construction method to generate LDPC matrix program oversight
Gaussian
- 高斯消元的matlab程序,有助于ldpc校验矩阵的构建,另赠peg算法-Gaussian elimination matlab program will help ldpc check matrix construction, and other gifts peg algorithm
PEG
- LDPC码的PEG构造,用matlab编写,希望对大家有所帮助。-The LDPC code PEG constructed matlab write, we want to help.
ldpc_peg_gallar_macay
- LDPC码的三种随机构造法,PEG/MACAY/Gallar,三种方法的matlab实现-Three random construction method of LDPC codes, PEG/MACAY/Gallar, three methods of matlab,
LDPC_H
- 在matlab环境下,构造LDPC码的校验矩阵的各种方法,包括Gallager构造法,Mackay构造法,PEG构造法,对以后的编译码算法有很大的帮助。-In the matlab environment, various methods LDPC code parity check matrix structure, including Gallager construction law, Mackay construction law, PEG construction method, af
ldpc
- LDPC码仿真,采用peg构造矩阵H,译码为spa。-The code for ldpc simulation under matlab。
PEG
- 实现PEG算法,构造任意大小校验矩阵。在matlab环境下编程,亲测有效-it can
PEG算法和DE算法
- 介绍了LDPC编码中的PEG算法和DE(Density Evolution)算法。(The PEG algorithm and DE (Density Evolution) algorithm in LDPC coding are introduced.)
LDPC-PEG算法构造H矩阵
- LDPC-PEG算法构造H矩阵源码程序,matlab源码程序 clear all; clc; %输入编码参数,m:校验节点数目,n:变量节点数目(注意码率R不一定为1/2) %构造任意码率的LDPC校验矩阵 m=input('The number of check nodes:'); n=input('The number of variable nodes:'); h=zeros(m,n); %给定变量节点度分布序列 dv=0.38354*x+0.04237*x^2+0.5740