搜索资源列表
cuboids_Apr19_2006
- 用来在视频中检测人体动作,包括了多种时空特征-Source code for human action detection in video
在matlab simulink上搭的一个H-H模型
- 自己根据所学在matlab simulink上搭的一个H-H模型,可以通过施加不同电刺激,模拟细胞膜上神经电位的变化-Their own knowledge in matlab simulink based on the ride of a HH model, can be subject to different electrical stimulation to simulate the changes in the membrane of nerve action potential
CSparse_matrix_tar
- csparse是《Direct Methods for Sparse Linear Systems》一书配套的源码教程,是稀疏矩阵在数值计算中的代码的例程,内含matlab接口,在数据压缩存储,大规模稀疏线性系统求解,游戏建模等方面有广泛的应用,且代码简洁高效,便于阅读学习。-CSparse is concise and simple to understand and thus suitable for a textbook, yet it is also industrial-strengt
matlabyouhua
- matlab优化应用书籍,书中详细讲述了matlab中优化方面,是一本难得的资料,书中有详细的案例和具体的操作过程是学习matlab优化的首选资料-matlab optimization of application of books, book detail in matlab, optimization, is a rare data, the book detailed the case and specific course of action is to learn matlab op
teleoperater
- 远程控制机器人的仿真程序。控制人员在A端做动作后,B端得机器人会做出相应的动作。-Remote control robot simulation program. Control personnel to do the movements in the A-side, after, B-side robot will have to make corresponding action.
actionRecognition_codes
- Serre code for action recogniiton in matlab using svm
Neurocal
- 利用matlab仿真神经元的动作电位及各种电参数的变化,离子通道电导变化等-HH cells using matlab simulation model of changes in all parameters and dynamics of action Potential generation process
Digitalsubtraction
- 数字减影血管造影( DSA) 通过向血管中注入造影剂, 使血管的整体影像的对比度有了明显的增强, 然后通 过造影前后图像的相减运算, 可以去除非血管器官的影像, 得到血管更清晰的图像, 目前广泛应用于心血管疾病的 诊断。由于患者的呼吸运动, 使得不同时间采集的图像相减后会产生运动伪影。为了消除运动伪影, 从医生临床上 对于心脏的运动以胸腔的横膈膜为参考目标得到启发, 首先得到很多幅注入造影剂之前的图像( 掩膜图像) 和一幅 注入造影剂之后的图像( 造影图像) , 然后指定其中的一
cylinder
- 在一个非稳态流场中,对圆柱在不同时刻所受到的流体作用的情况进行模拟-in an unsteady flow field, at different times of the cylinder by the fluid action of the simulated situation
features
- Learning Hierarchical invariant Sptio-temporal Features for action Recognition with independent Subspace Analysis. This package is aimed at providing read-to-use video features the stacked convolutional ISA model described in the paper, and functions
exam4_2
- 在matlab换件下利用有限元分析方法,采用三角形单元计算隧道在自重作用下的变形和应力-The next piece in matlab for finite element analysis using triangular element in the weight calculation of the tunnel under the action of deformation and stress
Kalman-Filtering-Theory-and-Practice
- 这本书提供了坚实的介绍卡尔曼滤波的理论和实践方面的读者。它已经更新了卡尔曼滤波,包括适应非线性滤波,更可靠的平滑方法,并在导航应用程序开发的实施和应用的最新发展。所有的软件是在matlab中,提供给读者的机会,发现如何卡尔曼滤波行动,并考虑实际运算需要保持结果的准确性。-This book provides readers with a solid introduction to the theoretical and practical aspects of Kalman filtering.
John-Wiley-a-Sons---Kalman-Filtering-Theory-And-P
- This book provides readers with a solid introduction to the theoretical and practical aspects of Kalman filtering. It has been updated with the latest developments in the implementation and application of Kalman filtering, including adaptations for n
matlab
- 数字控制系统仿真与综合应用:设控制对象为 W1=10/s(1+0.1s)(1+0.05s),采样周期T=0.2s。 (1)采用零阶保持器,将W1(s)转换成W1(z),串接一个计算机调节模型D(z)组成一个典型的数字反馈系统。分别用仿真方法得到系统在单位阶跃输入作用下的响应和系统在单位速度输入时的输出响应。 -Digital control system simulation and comprehensive application: set control object for W1
matlab
- 本程序为第四章的第二个算例,采用三角形单元计算隧道在自重作用下的变形和应力-Tunnel under the action of gravity in the deformation and stress
matlab
- LTI系统的分析。用函数y=filter(p,d,x)实现差分方程的仿真,也可以用函数 y=conv(x,h)计算卷积,用y=impz(p,d,N)求系统的冲激响应,再用卷积来计算任意信号作用于系统的响应。-Analysis of LTI systems. With the function y = filter (p, d, x) to achieve the simulation of differential equations can also be used to calculate
Fourier descriptors using matlab
- The descr iptors c(k) describe the frequency contents of the curve: a value of k close to zero will describe low frequency information, an approximative shape, and the higher frequencies will describe details. For k = 0, c(k) represents the position
pr4
- The linear optimization model of a complex health condition of a biological object on the example of a combination drug with local action. The optimization criterion: irritant effect (%) after applying(It was formed by the optimization criterion of t
qlearning
- An Example for Reinforcement Learning using Q-learning with epsilon-greedy exploration(The deterministic cleaning-robot MDP a cleaning robot has to collect a used can also has to recharge its batteries. the state describes the position of the robot a
DropOut深度网络
- 深度神经网络在测试时面对如此大的网络是很难克服过拟合问题的。 Dropout能够很好地解决这个问题。通过阻止特征检测器的共同作用来提高神经网络的性能。这种方法的关键步骤在于训练时随机丢失网络的节点单元包括与之连接的网络权值。在训练的时候,Dropout方法可以使得网络变得更为简单紧凑。在测试阶段,通过Dropout训练得到的网络能够更准确地预测网络的输出。这种方式有效的减少了网络的过拟合问题,并且比其他正则化的方法有了更明显的提升。 本文通过一个简单的实验来比较使用Dropout方法前后网络