搜索资源列表
Deep-Learning
- 实现常见的深度神经网络的学习过程,适合初学者学习使用,也可以进一步开发使用,具有较高的学习价值和学术价值。-The depth to achieve common neural network learning process, suitable for beginners to learn to use, can be further developed to use, with high learning and academic values.
Deep-Learning-Note
- 对学习深度神经网络很有用的资料,深入浅出地对相关的知识点进行了解析,值得一阅-Very useful for learning neural network, explain profound theories in simple language to analyze the related knowledge points, worth reading
Deep-Learning-Toolbox
- 深度学习matlab工具箱,包括深度deep belief nets,stacked autoencoder,convolutional neural nets等网络。-Matlab/Octave toolbox for deep learning. Includes Deep Belief Nets, Stacked Autoencoders, Convolutional Neural Nets, Convolutional Autoencoders and vanilla Neural Ne
DeepLearningTutorials-python
- 深度神经网络轻量级工具包,Python简单实现,内含各种模型的代码以及模型的简单理解说明,适合初学者阅读使用。-Deep Neural Networks lightweight toolkit, Python simple implementation, containing simple to understand explanation of each model and the model code, suitable for beginners read.
deep-neural-network
- 由微软提供的深度学习资料,包括了各种深度学习算法和开源工具包的使用。-deep learning toolkit
DeepNeuralNetwork20150129
- matlab code for Deep Neural Network
Deep-neural-network
- Deep neural network Deep neural network-Deep neural networkDeep neural network
DeepNeuralNetwork20150129
- deep neural learning
neural-networks-and-deep-learning-master
- 用不同的方法实现了神经网络(没有用第三方库,就是用numpy等实现的,对于初学者来说是不错的深入了解神经网络的素材)(Using different methods to achieve the neural network (not using third square libraries, that is, using numpy and so on, for beginners is a good understanding of the neural network material))
deep-go_20170125
- web端直接打开对战,主要是人机对战,机器人拥有9级棋力(Play Go Against a Deep Neural Network)
neural-networks-and-deep-learning-master
- neural-networks-and-deep-learning-master
neural face recognition
- This pdf introduces a method of face recognition untitled Face Recognition with Very Deep Neural Networks
Learning Deep Architectures for AI
- 一本关于深度架构学习算法,尤其是用来构造更深层模型的非监督学习的单层模型。(Theoretical results suggest that in order to learn the kind of com- plicated functions that can represent high-level abstractions (e.g., in vision, language, and other AI-level tasks), one may need deep archite
Dynamic_Deep_Neural_Networks
- We introduce Dynamic Deep Neural Networks (D2NN), a new type of feed-forward deep neural network that allows selective execution. Given an input, only a subset of D2NN neurons are executed, and the particular subset is determined by the D2NN itse
Deep Learning Based Communication Over the Air
- 通信系统的端到端学习是a 引人入胜的新颖概念迄今为止仅被验证 模拟基于块的传输。它允许学习 发射机和接收机实现为深度神经网络 (NN),它们针对任意可区分的端到端进行了优化 performancemetric,例如块错误率(BLER)。在本文中,我们 证明无线传输是可能的:我们建造, 训练,并运行完整的通讯系统 的神经网络使用非同步的现成软件定义无线电 和开源深度学习软件库。(End-to-end learning of communications systems is a
py3-neural-network-master
- Python3.6实现神经网络算法,经过mnist数据集测试后表现良好,准确率约为95%-96%。 /src 为源代码 /data为mnist算集(This is a code samples for "Neural Networks and Deep Learning" using python3.)
cifar10_tutorial
- 非常适合入门的一个深度学习图片分类例程!(Very suitable for beginners to learn a deep picture classification routines!)
Neural-Networks-and-Deep-Learning-A-Textbook
- Charu C. Aggarwal Neural Networks and Deep Learning
Deep Neural Network
- 深度神经网络训练过程中:首先是进行初始化,根据需求设置神经网络的基本结构;然后进行前向传递(feedforward),层与层之间进行传递,求得误差;然后进行反向传播(back propogation),根据误差最小化原则,使用随机梯度下降法,对各个参数进行求导,确定下降方向,对各个参数进行更新(In the training process of deep neural network, firstly, initialization is carried out, and the basic
deep-learning
- Dynamic resource allocation dqn