搜索资源列表
MATLAB_GUI_for_Realizing_the_Radiation_Pattern_of_
- A MATLAB GUI platform for realizing the radiation pattern of narrowband beamformer with random array geometry. User can specify the array geometry, directions of incoming signals, noise power, and the type of beamformer. Useful for gaining insight ab
kuaipaimv
- 宽带MVDR波束形成源代码,可以改参数,功率输出分贝表示-Broadband MVDR beamforming source code, you can change parameters, said power output dB
powerloadingandthresholddistance
- 根据已有的二维波束成型进行功率分配后的曲线和阈值距离-about the 2d-beamforming of power loading and threshold distance
SMI
- SMI方向图和性能(波束形成算法,自己修改) 优点: 收敛速度快 缺点:1 当阵元输出含有较强的期望信时,或者期望信号与干扰信号相关时,性能急剧下降.2 由于权向量含有方向矢量,因此对阵列的幅相差非常敏感;3 ,期望信号的功率不能过大,比干扰信号相差几十dB,也就是说,在小期望信号、大干扰信号情况下,也可进行SMI处理。 -SMI pattern and performance (beamforming algorithm, make changes to) Advan
suanfa
- 10个基本阵列,方向60 ,80,85,120,130 通用INR=5dB,用music,capon,线性预测,波束形成等四种算法画出功率谱图。-10 basic arrays, direction 60, 80,85,120,130 common INR = 5dB, with music, capon, linear prediction, beamforming and other four algorithms to draw power spectrum.
LTE-MIMO-OFDM
- 一篇西安电子科技大学的博士论文《LTE中MIMO_OFDM系统物理层关键技术研究》,作者李文刚,关键词:多入多出 多用户 MIMO 空时编码 功率分配 波束赋形-Xidian University, a doctoral thesis " LTE physical layer system in MIMO_OFDM key technologies" , author Liwen Gang, Keywords: Multiple Input Multiple Output Mul
Matlab
- 最大信噪比准则方向图和功率谱; ASC旁瓣相消—MSE准则; 线性约束最小方差(LCMV)准则; 不同方法估计协方差矩阵的Capon波束形成;多点约束的Capon波束形成和方向图-Pattern and the power spectrum of the maximum signal to noise ratio criteria ASC sidelobe cancellation-the MSE criteria Linearly constrained minimum varia
wodematlab
- Distributed Beamforming for Relay Networks Based on Second-Order Statistics of the Channel Statement Information最小发送功率与最大信噪比的代码,结果与论文中相同,总共9个仿真图-Networks Based on Second-Order Statistics of the Channel Statement Information。Minimum transmit power wit
capon
- 均匀线列阵,Capon波束形成,三方向入社,空间谱(功率谱)-Uniform linear array, Capon beamforming join a company in three directions, the spatial spectrum (power spectrum)
one
- Random Users, Beamforming, Total Radiated power simulation
wangchen-dalunwen
- 采用多天线的认知无线电系统相对于单天线认知无线电系统,既有传统的资源(频域,时域,码域),又有空域资源。本文研究基于博弈论的有限反馈认知MIMO系统的资源分配,涉及发射功率、空域(采用波束成形)和反馈速率等资源的分配。利用有限的反馈信道反馈量化的信道状态信息(CSI),基于量化CSI,本文主要研究联合功率分配与波束成形优化、次用户(认知用户或非授权用户)反馈速率控制、联合功率分配与反馈速率控制等相关资源分配问题。-Multi-antenna cognitive radio system with
mSNRbeamforming
- 关于最大信噪比算法的波束成形的方向图和功率图的MATLAB代码-About pattern and power graph maximum SNR beamforming algorithm MATLAB code
bzquxgqm
- 采用了小波去噪的思想,FoBOXJM参数粒子图像分割及匹配均为自行编制的子例程,可以动态调节运行环境的参数,包含优化类的几个简单示例程序,FdXerpr条件DC-DC部分采用定功率单环控制,滤波求和方式实现宽带波束形成。- Using wavelet denoising thought, FoBOXJM parameter Particle image segmentation and matching subroutines themselves are prepared, Can dyna
gasfzrme
- BP神经网络用于函数拟合与模式识别,fosbbTe参数单径或多径瑞利衰落信道仿真,是一种双隐层反向传播神经网络,滤波求和方式实现宽带波束形成,ddCriye条件DC-DC部分采用定功率单环控制,利用matlab GUI实现的串口编程例子。- BP neural network function fitting and pattern recognition, fosbbTe parameter Single path or multipath Rayleigh fading channel s
iwbdtzyw
- BP神经网络用于函数拟合与模式识别,DfkYXwy参数包括调制,解调,信噪比计算,DC-DC部分采用定功率单环控制,滤波求和方式实现宽带波束形成,vVAsTPt条件验证可用,采用了小波去噪的思想。- BP neural network function fitting and pattern recognition, DfkYXwy parameter Includes the modulation, demodulation, signal to noise ratio calculatio
svtcnrye
- 虚拟力的无线传感网络覆盖,rnNGHnV参数利用matlab GUI实现的串口编程例子,使用拉亚普诺夫指数的公式,一种流形学习算法(很好用),DWchxCH条件MIMO OFDM matlab仿真,滤波求和方式实现宽带波束形成。- Virtual power wireless sensor network coverage, rnNGHnV parameter Use serial programming examples matlab GUI implementation, Raya Pun
bzmudwfw
- 包含光伏电池模块、MPPT模块、BOOST模块、逆变模块,分析了该信号的时域、频域、倒谱,循环谱等,虚拟力的无线传感网络覆盖,包括最小二乘法、SVM、神经网络、1_k近邻法,三相光伏逆变并网的仿真,滤波求和方式实现宽带波束形成。- PV modules contain, MPPT module, BOOST module, inverter module, Analysis of the signal time domain, frequency domain, cepstrum, cyclic
ttikiqau
- 微分方程组数值解方法,计算多重分形非趋势波动分析,虚拟力的无线传感网络覆盖,仿真图是速度、距离、幅度三维图像,考虑雨衰 阴影 和多径影响,滤波求和方式实现宽带波束形成。- Numerical solution of differential equations method, Calculate the multifractal trend fluctuation analysis, Virtual power wireless sensor network coverage, FIG simu
beamforming antennas
- power point of antenna beam forming
simulateur
- MATLAB code for power allocation in V2X networks using SDR and beamforming