搜索资源列表
1
- 实现信号稀疏变换、观测矩阵设计、重构算法等一系列最新理论成果。-Achieve sparse signal transformation, observation matrix design, reconstruction algorithm and a series of recent theoretical results.
as
- 模拟 AM FM DSB 信号傅里叶变换图 频域稀疏-Analog AM FM DSB frequency domain signal sparse Fourier transform Figure
12
- 用于压缩感知的各种稀疏变换基和观测矩阵,有具体的源程序,是用matlab编程的。-Compressed sensing for a variety of sparse matrix transform bases and observations, a specific source is using matlab programming.
JISP20140100000_16513260
- 压缩感知将数据的采样和压缩同时处理,仅需少量测量就能重建信号。测量矩阵直接影响着信号适应 的稀疏度范围和重建效果。为了减小测量矩阵与稀疏变换矩阵的互相干性,提出一种基于 KSVD-ETF 的测量矩 阵和稀疏表达字典联合优化的方法,在对测量矩阵进行 ETF 优化的同时利用 KSVD 方法更新优化表达字典,实 验结果中利用该方法优化矩阵所得重建信号 PSNR 有所提高,表明优化测量矩阵的方法在重建效果方面有一定 的优势。- Compressive sensing, a novel s
wavelet_FISTA
- 利用小波变换作为稀疏基,并利用快速迭代软阈值进行稀疏促进,最终实现基于压缩感知理论的数据重构- Wavelet transform is used as the sparse basis, and the sparse promotion is realized by using the fast iterative soft threshold. Finally, the data reconstruction based on the compression perception the
Compressive_sensing
- 傅立叶变换矩阵对信号进行稀疏表示,用高斯随即观测矩阵观测,重构方法为征缴匹配追踪算法、压缩感知入门程序,经典之作- U5085 u7An2F3 u53D3 u53A2 u7R09 u09R0 U9635 u89C2 u6D4B uFF0C u91CD u678 u6B1 u6CD5 u4E3A u5F81 u7F34 u5339 u914D u8E U5E8F uFF0C u7ECF u5178 u4E4B u4F5C
contourlet_toolbox.tar
- 轮廓波变换的基本原理,对输入图像的进行轮廓波变换,并重构原始信号(The basic principle of contourlet transform, performing contourlet transform on the input image and reconstructing the original signal.)
dect-multra-master
- 关于能谱CT重建算法的,涉及稀疏变换,聚类等等(About the energy spectrum CT reconstruction algorithm, involving sparse transform, clustering and so on)