搜索资源列表
072282
- 提出了一种自动构造特定领域本体的方法,该方法应用术语抽取和多重聚类技术。在术语抽取阶段,通过术语在专业语料与背景语料中出现概率的对比,采用LLR公式对术语进行评分,取得了更好的抽取效果。在层级关系发现过程中,采用上下文共现信息结合HowNet中词语的语义相似度,进行术语间相似度度量,力求获得术语间最合理的相关状况。同时改进了k-medoids聚类算法,更准确地发现术语的层级关系,进而构造出特定领域的本体。-This paper presents an approach to mining dom
kMedoids
- K-Medoids算法是在K均值算法的基础上优化的K中心算法。这个文件解压后,直接运行mykmedoids这个文件就好-K-medoids algorithm is optimized in the K-means algorithm based on K-center algorithm. This file is unpacked, run directly mykmedoids file!
kmedoids
- K-medoids聚类算法的PYTHON版本,其它语言版本可以根据同一个原理进行改写-K-medoids cluster code in the version of python
k-medoids
- Code with matlab of kmedoids clustering-Code with matlab of kmedoids clustering....
Kmeans_medoids
- k-means和k-mediods的JAVA实现。直接读取文档数据,适用于二维数据。-k-means and k-Medoids clustering algorithm JAVA implementation. Document data read directly,suitable for two-dimensional data.
k_medoids
- 采用MATLAB实现k-medoids聚类算法(Implementation of k-medoids clustering algorithm using MATLAB)
k-mediod-PAM
- k-medoids with matlab is very strong
clara-clarans
- k-medoids with matlab is very strong
KM
- 基于k-medoids算法的改进算法,在第五代移动通信中D2D通信中的应用。(The improved algorithm based on k-medoids algorithm is applied to D2D communication in the fifth generation mobile communication.)