搜索资源列表
-
0下载:
一种利用中心和结构聚类的稀疏表示图像去噪方法,有不错的效果-a image denoising method with structral clustering and sparse representation, has good effect .
-
-
1下载:
romp算法实现基于稀疏表示的图像超分辨率算法字典对的训练,本代码为matlab文件 -Romp algorithm to realize image super-resolution algorithm based on sparse representation of a dictionary of training, the code for the matlab files
-
-
0下载:
matlab code of A hybrid approach combining extreme learning machine and sparse representation for image classification. Engineering Applications of Artificial Intelligence 27 (2014): 228-235.-Luo, Minxia, and Kai Zhang. A hybrid approach combining e
-
-
0下载:
图像的稀疏表示,通过该算法可以读图像进行稀疏表示,并且查询字典可还原图像.-Image sparse representation, can be achieved by the algorithm of image sparse representation, and combine the dictionary query, can restore the image.
-
-
3下载:
本代码主要实现了基于双字典交叉稀疏表示的SAR图像变化检测的功能。-This code mainly realize the function of SAR image change detection is based on the double cross dictionary sparse representation.
-
-
0下载:
杨建超文献CVPR08超分辨重建的源代码(Image Super-Resolution via Sparse Representation-yang)
-
-
1下载:
图像去噪修复的典型算法代码包,包含基于稀疏表示的KSVD图像去噪,BM3D彩色图像去噪代码,TV图像修复代码,MCA图像修复代码。(Typical image denoising algorithm code package, including sparse representation based on KSVD image denoising, BM3D color image denoising code, TV image restoration code, MCA image res
-
-
0下载:
中心稀疏表达去除高斯噪声,iccv会议论文源码,内含文献,原文题目Centralized Sparse Representation for Image Restoration(Centralized Sparse Representation for Image Restoration)
-
-
0下载:
稀疏与冗余表示-理论及其在信号与图像处理中的应用一书的源代码(Sparse and redundant representation -From theory to application in signal and image processing -- the source code of the Book)
-
-
0下载:
Image Super-Resolution via Sparse Representation, J Yang.pdf.gz
-
-
4下载:
稀疏表示分类器应用于高光谱图像分类的MATLAB代码实现(MATLAB Code Implementation of Sparse Representation Classifier for Hyperspectral Image Classification)
-
-
0下载:
This package contains the code which is associated with the following papers:
Yu Liu, Zengfu Wang, "Simultaneous image fusion and denoising with adaptive sparse representation". IET Image Processing,vol.9, no.5 ,pp.347-357, 2015
Edite
-