搜索资源列表
kmeans
- 这是基本的k均值算法是模式识别的聚分类问题,这是用C实现其算法以下是程序源代码,希望对大家有所帮助。-This is the basic k-means algorithm is a pattern recognition classification of polyethylene, which is used to achieve its algorithm C Following is the source code, I hope all of you to help.
K-means
- 简单实用的k均值聚类算法,可以实现多位向量的简单聚类-Simple and practical k-means clustering algorithm, can achieve more than a simple vector clustering
GA1E1
- 用K均值和遗传算法实现了半监督聚类算法,这是个一个已经发表的论文的源程序-Using K-means and genetic algorithm to achieve a semi-supervised clustering algorithm, this is a paper published source
knear
- K均值算法,用于聚类,程序写得比较好,容量读-K means algorithm for clustering, procedures written better, capacity Reading
k
- k均值算法,数据挖掘里面比较基础的算法,实现类聚-k-means algorithm, which based on the comparison of data mining algorithms to achieve clustering
kmean
- 实现了K-均值算法,并有简单的案例实现,简单易懂-K- means algorithm implements, and there is a simple case of realization, easy to understand
ClusterAnalysis_2014.11.4
- 模式识别的聚类分析。K均值聚类算法是先随机选取K个对象作为初始的聚类中心。然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。一旦全部对象都被分配了,每个聚类的聚类中心会根据聚类中现有的对象被重新计算。这个过程将不断重复直到满足某个终止条件。终止条件可以是没有(或最小数目)对象被重新分配给不同的聚类,没有(或最小数目)聚类中心再发生变化,误差平方和局部最小。-Pattern recognition clustering