搜索资源列表
-
0下载:
CRC循环冗余检测
车牌定位与识别系统
基于神经网络的文字识别系统
小波算法的VC++实现
网络流量监控系统
实时曲线显示
远程监控系统-CRC cyclic redundancy detection license plate location and recognition system based on neural network character recognition system wavelet algorithm VC++ Network traffic
-
-
0下载:
The code implements a LVQ neural network for character recognition (English alphabets).
-
-
0下载:
霍普菲尔得神经网络字符识别matlab 仿真程序-Hopfield neural network character recognition have matlab simulation program
-
-
0下载:
基于神经网络的文字识别系统,VC6.0环境下运行-Neural network character recognition system
-
-
0下载:
字符识别 用卷积神经网络识别A-Z26个英文字母-Character recognition using convolution neural network A-Z26 letters
-
-
0下载:
这是利用神经网络来实现手写字符识别,起准确率已经达到99.26 ,可以继续调整参数达到更深层次的效果。需要自己搭建opencv环境。后期工作可以利用cuda对其更深层次的加速-This is achieved using a neural network handwritten character recognition, since the exact rate has reached 99.26 percent, can continue to adjust the parameters t
-
-
0下载:
此代码是对卷积神经网络用于手写字体识别的实现,程序是基于theano库开发的,并且用到了集成化模块keras,方便我们构建自己的网络结构,很好的解决分类问题-This code is the convolution neural network for handwritten character recognition, the program is based on the theano library development, and use the integrated modular k
-
-
0下载:
关于神经网络应用于汉字识别方面的程序,需要的可以看看哦-About Neural Network Character recognition procedures, we need to look oh
-
-
0下载:
c++的bp神经网络字符识别系统可以识别数字字母-c++ bp neural network character recognition system can recognize alphanumeric
-
-
0下载:
The following Matlab project contains the source code and Matlab examples used for neural network programs. Perceptron LMS Feed Forward Back Propagation Character Recognition
The source code and files included in this project are listed in the proj
-
-
0下载:
1.先打开一幅图片然后按照顺序灰度化、二值化、灰度拉伸、车牌定位、二值化、倾斜校正、字符分割、训练神经网络、识别字符。
2.测试图像存储在当前目录的img下。
3.测试集、训练集、目标向量均存储在img下的文本文件中。(1. First open a picture and then follow the sequence of grayscale, binary, grayscale stretching, license plate positioning, binarization, ti
-
-
0下载:
基于两层BP神经网络,加入dropout和softmax,输出层使用softmax,实现对手写字符库MNIST的识别,正确率达90%。(Based on the two level BP neural network, adding dropout and softmax, the output layer uses softmax to realize the recognition of handwritten character library MNIST, the accuracy ra
-