搜索资源列表
KLT2
- 在图像中提取特征点,根据特征点进行目标跟踪-the image feature extraction, according to the characteristic points of target tracking
DistinctiveImageFeaturesfromSc
- 图像处理的一个关键算法 来自计算机视觉领域的一片论文 SIFT用来提取图像的特征点 可以用来做物体追踪,Image processing algorithm, a key area of computer vision from a thesis to extract images SIFT feature points can be used to do object tracking
kalman-tracking.rar
- 用kalman滤波对运动点进行跟踪,用opencv函数写的。,Kalman filtering with points on the campaign tracking, written by opencv function.
opencvOflowprylk
- 基于opencv的稀疏点集光流跟踪程序,速度比较快,可用于视频跟踪-The sparse set of points based on opencv optical flow tracking procedure, the speed is faster, can be used for video tracking
Automatic-segmentation
- 在最优阈值分割的基础上,用自动区域生长去除气管/支气管区域,对边界跟踪法进行改进以快速 去除背景干扰和获得肺部边界,最后进行肺部边界修补得到完整的肺部图像。算法采用迭代法寻找最 优阈值解决了阈值选取的敏感性问题,提出了基于前层图像中气管/支气管位置的气管/支气管提取方 法,避免了种子点的人工选取,基于前次搜索方向改进了八邻域搜索方法来提高边界跟踪的速度。 -In the optimal threshold segmentation based on region growing
MeanShift
- 为了提高经典的Mean Shift算法在复杂场景中的跟踪性能,提出了一种基于角点的目标表示方法。首 先,利用Harris角点检测算法提取表示目标主要特征的角点 其次,基于提取的角点,建立目标模型,将其嵌入 Mean Shift算法进行跟踪。该方法仅用少量的关键点表示目标,能够自动去除目标和背景中的次要特征,有效地 抑制背景成分对目标定位的影响,从而改进Mean Shift目标跟踪算法的性能。-To imp rove the performance of the classicalMe
contourtrack
- matlab边界自动跟踪程序,该程序可以直接运行,涉及边界判别准则和搜索准则。图像要求为二值图像,可输出为边界的点的坐标和轮廓图像。-matlab boundary automatic tracking program can be run directly involving border criteria and search criteria. Image requirements for binary images can be output for the coordinates of
sift
- SIFT算法,可以有效的找到不同画面中的对应特征点,在跟踪和图形识别方面有很好的用途-SIFT algorithm, can effectively find a different screen the corresponding feature points, in the tracking and pattern recognition as a very good use of
track_a_rotate_point_using_Kalman_method
- 使用Kalman滤波器跟踪一个旋转的点,用于特征点的跟踪-Use Kalman filter to track a rotating point for the tracking of feature points
gujia2
- 本程序主要是提取骨架的端点和分支点,方法采用的是单链表轮廓跟踪。-This program is mainly extract the skeleton endpoints and branch points, and methods used in single-contour tracking list.
OpenCV_LKDemo
- LK稀疏光流Demo 可以在场景中自动找出关键点并自动跟踪,也可以使用鼠标在指定位置添加关键点,此程序是很好的学习光流的示例。本程序基于OpenCV。-LK Sparse Optical Flow Demo automatically in the scene to identify the key points and automatic tracking, you can also use the mouse to add the key points in the specified lo
sift
- sift目标跟踪特征点的匹配,检测性能高,匹配效果好-sift target tracking feature points of the match, testing high-performance, match the good results
kalman
- kalman滤波器收到好的结果基于c++和opencv-Tracking of rotating point. Rotation speed is constant. Both state and measurements vectors are 1D (a point angle), Measurement is the real point angle+ gaussian noise. The real and the estimated points
8_orientian_genzong
- 于八方向链码的边界跟踪代码,其中nVerct数组存储的是边界点的矢量方向,Coordinate存储的是边界点的坐标。-In the eight-direction chain code boundary tracking code, which is stored in the array nVerct vector direction of the boundary points, Coordinate stores the coordinates of boundary points.
Fast-Eyetracking
- 该源代码能够检测人脸中的特征点,并根据特征点进行眼睛区域跟踪。-The source code is able to detect feature points in the face and eye area according to feature points tracking.
track
- feature points tracking from web camera or file
based-on-Feature-Tracking
- 基于特征点的跟踪,跟踪效果还不错,可以进行改进-Based on the tracking feature points, tracking results were pretty good, can be improved
feature-points-matching
- 对灰度差绝对平均值算法匹配次数多,不具有旋转不变性等缺点,提出一种新的目标识别方法。匹配准则采用具 有环形结构的子窗口内的像素差加毂和的形式表示,保证了算法具有旋转不变性。对模板图像中的特征点按照匹配准则分 别在目标图像中找到相应的匹配点,从而完成匹配操作,与传统的相关匹配算法相比,大大减少了匹配次数。对于因遮挡而 丢失的特征点,可根据已匹配特征点之问的相对距离来重新确定,从而实现目标识别的功能。仿真实验验证了该算法的有 效性。-A new target recognition
long-term-tracking
- 这是一种新的单目标长时间(long term tracking) 跟踪算法。该算法与传统跟踪算法的显著区别在于将传统的跟踪算法和传统的检测算法相结合来解决被跟踪目标在被跟踪过程中发生的形变、部分遮挡等问题。同时,通过一种改进的在线学习机制不断更新跟踪模块的显著特征点和检测模块的目标模型及相关参数,从而使得跟踪效果更加稳定、鲁棒、可靠。-This is a new single target for a long time (long term tracking) tracking algorit
racking-Feature-Points-in-Video
- 基于OpenCV,对视频中的特征点进行提取,并跟踪。-Tracking Feature Points in Video