搜索资源列表
bg_subt_code
- Nonparametric Background subtraction classes非参数视频背景建模的一个类,该方法是目前背景建模中最好的方法之一-Nonparametric Background subtraction classes video background of non-parametric modeling of a class that the method is modeling in the present context, one of the best way
Circle_Recognition_Through_a_Point_Hough_Transform
- :给出了一种新的Hough 变换圆检测方法——点Hough 变换(PHT)。该方法根据圆周上任意两条不平行弦的中垂线相交与圆心的几 何性质,同时选取曲线上3点 进行计算,将传统Hough变换圆检测时的三维参量统计变成一维参量统计,极大地降低了计算复杂性和对资源的需求。为了克服任意选取组合点可能带来的计算量增加及统计结果的分散程度提高,文中提出了点的选择方法。合成图和实际图像的实验结果表明,该方法用于普通图像中圆检测时快速、稳定、准确。-: This paper presents a new
0houghtoedge
- 可以检测图像中圆和直线的信息,有利于初学者使用学习。-Edge detection has played an important role in the field of computer vision. A parametric edge detection method based on recursive mean-separate image decomposition is introduced. A method for automatic parameter selection
rcs
- :为了提高计算的精度和效率,将NURBS参数曲面应用到电大尺寸目标的RCS预估中。使用CAD软件建立模型,通 过对模型IGES文件中数据结构的分析,并以IGES文件为接口,从CAD软件模型中提取出NURBS曲面信息,然后用Cox—De Boor算法把NURBS曲面转换为Bezier益面,结合物理光学法和渐进积分展开法精确、高效的求解出任意理想导体目标曲面的 RCS-: In order to improve the calculation accuracy and effici
capon
- 实验目的: 研究上课所讲谱分析方法,利用实验验证书中的结论,掌握各种谱分析方法,学会实验设计和实验结果分析。 实验内容: 所应用到的谱分析方法,包括: 1) 非参数化方法:周期图(直接法)、BT法(间接法),Welch平均周期图法 2) 参数化方法: RELAX、Capon 3) 空间谱估计:常见的DOA方法(Capon) -Experimental Objective: To study methods of spectral analysis class talk
UG-development
- 本文讨论了对UG进行二次开发利用参数化特征建模方式建立标准件库的方法-This article discusses the development and utilization of secondary UG parametric feature modeling approach to establish the method of standard parts library
Euler-Walker
- 高斯消元法解尤拉沃克方程,从而进行参数化功率谱估计-Gaussian elimination method for solving the Euler Walker equation, thus a parametric power spectrum estimation
Semantic-Segmentation
- CVPR2012_oral Weakly Supervised Structured Output Learning for Semantic Segmentation-We address the problem of weakly supervised semantic segmentation. The training images are labeled only by the classes they contain, not by their location in t
Probability-density-estimation
- 语音信号处理中关于概率密度的估计,分为参数法和非参数法两类。在此基础上用MATLAB做出了仿真。-Speech signal processing on the estimates of the probability density is divided into two types of parametric method and non-parametric method. On this basis, to make the simulation using MATLAB.
MeanShift
- MeanShift算法是一种无参概率密度估计法,算法利用像素特征点概率密度函数的梯度推导而得, MeanShift算法通过迭代运算收敛于概率密度函数的局部最大值,实现目标定位和跟踪,也能对可变形状目标实时跟踪,对目标的变形,旋转等运动也有较强的鲁棒性。MeanShift算法是一种自动迭代跟踪算法,由 MeanShift补偿向量不断沿着密度函数的梯度方向移动。在一定条件下,MeanShift算法能收敛到局部最优点,从而实现对运动体准确地定位。-MeanShift algorithm is a no
Homography Estimation Techniques
- The estimation of the homography between two views is a key step in many applications involving multiple view geometry. The homography exists between two views between projections of points on a 3D plane. A homography exists also between projections