搜索资源列表
-
4下载:
基于字典学习的稀疏编码,最新的版本,可以用于 window Linux和MacOs-Sparse Coding on Dictionary Learning,the new version. it can be applied to the windows, Linux and Mac
-
-
0下载:
稀疏编码的算法,运行请阅读readme文件,很简单,Sparse coding algorithmsrun matlab and execute:
"demo_fast_sc(1)": epsilon-L1 sparsity penalty
"demo_fast_sc(2)": L1 sparsity penalty
-
-
0下载:
基于稀疏编码和线性塔式匹配的图像分类算法。-This package contains the Matlab codes implementing the ScSPM algorithm described in CVPR 09 paper "Linear Spatial Pyramid Matching using Sparse Coding for Image Classification".
-
-
0下载:
强壮的人脸识别系统,发表于cvpr2011年,程序是应用matlab实现-Recently the sparse representation (or coding) based classifi cation (SRC) has been successfully used in face recognition. In SRC, the testing image is represented as
a sparse linear combination of the trai
-
-
0下载:
稀疏编码,去噪,奇异值分解 MATLAB-Sparse coding, denoising, singular value decomposition MATLAB
-
-
0下载:
本文实现了09年CVPR的文章Linear Spatial Pyramid Matching using Sparse Coding for Image Classification-This package contains the Matlab codes implementing the ScSPM algorithm described in CVPR 09 paper
"Linear Spatial Pyramid Matching using Sparse Coding for
-
-
0下载:
matlab源码,对稀疏编码算法的实现以及测试,内含详细程序。-The matlab source code, implementation and testing of sparse coding algorithm, containing detailed program.
-
-
0下载:
omp算法,一个稀疏编码算法的代码。使用matlab编程。-omp algorithm, a sparse coding algorithm code.
-
-
0下载:
主要是基于KSVD的稀疏编码去噪的算法,属于matlab版的,里面有我个人的所有注释!-Mainly based on the sparse coding KSVD denoising algorithm, belong to matlab version, there are my personal all comments!
-
-
1下载:
This package contains the Matlab codes implementing the ScSPM algorithm described in CVPR 09 paper
Linear Spatial Pyramid Matching using Sparse Coding for Image Classification .基于空间金字塔匹配的稀疏编码,用于图像检索,识别与分类-This package contains the Matlab codes im
-
-
0下载:
Sparse Concept Coding for Visual Analysis
-
-
0下载:
快速稀疏编码算法,关于稀疏表示的基本算法(Fast sparse coding algorithm and sparse representation algorithm)
-
-
0下载:
杨建超的将稀疏表达用于图像超分辨率重建的文章赋代码(Example matlab code for the algorithm proposed in "Image super-resolution via sparse representation" TIP 2010.)
-