搜索资源列表
cx1
- 扩展卡尔曼滤波方法用于被动多传感器协同目标跟踪-Extended Kalman filter for passive multi-sensor collaborative target tracking
Consensus-Kalman-filtering
- 关于卡尔曼滤波的最经典起步资料,介绍卡尔曼滤波协同算法,值得学习-A classical paper which introduce the Kalman filtering algorithm,especially for the Kalman-Consensus filter
svdfeature-1.1.6
- CF svdFeature, 基于C++开发的,利用svd奇异矩阵分解建立的协同过滤工具箱。可以解决常用的所有协同过滤问题。对于推荐系统的建立至关重要,是很好的学习和使用的工具箱。协同滤波也是最有机器学习感觉的方法之一,我们大家都爱它!-CF svdFeature, a well performed toolkit of confiltering method based on svd, which is developed using C++ programming language. It
CF
- 这是用matlab写的协同滤波算法主程序,程序简单,易于理解。可以应用于推荐系统-It is used to write collaborative filtering algorithm matlab main program, the program is simple and easy to understand. Recommended system can be applied。。。。。。
machine-learning-ex8
- 吴恩达老师Cousera上机器学习课程ex8关于协同滤波(Collaborative filtering learning algorithm)的向量化实现以及相关测试数据。(Teacher Andrew Ng Cousera machine learning courses, ex8 Collaborative filtering learning algorithm on the vector implementation and related test data.)