搜索资源列表
ww345
- 小波包分析在刀具声发射信号特征提取中的应用[1小波包分析在刀具声发射信号特征提取中的应用[1]--文章-wavelet packet analysis tool in the acoustic emission signal feature extraction of [a wavelet packet analysis tool in the acoustic emission signal feature extraction applications [1] -- article
wav_featu
- 模式识别中,以小波分析为基础的信号能量特征提取方法,matlab源代码-pattern recognition to wavelet analysis of the signal energy feature extraction method, the source code Matlab
rtcmas_client
- 小波包分析提取振动信号中的特征频率,以及能量谱分析计算-wavelet packet analysis vibration signal from the characteristic frequency, and the energy spectrum analysis
对轴承故障振动信号的matlab小波分析程序
- 对轴承故障振动信号的matlab小波分析程序,能完成对故障特征频率的提取,Of bearing fault vibration signals matlab wavelet analysis procedures, can finish on the fault characteristic frequency extraction
EMD-Toolbox
- EMD的Toolbox及使用方法 经验模态分解(Empirical Mode Decomposition, 简称EMD)是由美国NASA的黄锷博士提出的一种信号分析方法.它依据数据自身的时间尺度特征来进行信号分解, 无须预先设定任何基函数。这一点与建立在先验性的谐波基函数和小波基函数上的傅里叶分解与小波分解方法具有本质性的差别。正是由于这样的特点, EMD 方法在理论上可以应用于任何类型的信号的分解, 因而在处理非平稳及非线性数据上, 具有非常明显的优势。所以, EMD方法一经提出就在不同的
featureextraction
- 利用MATLAB实现一维信号时间序列的,特征提取,其中包括ICA和基于小波包的方法。-Use MATLAB to achieve one-dimensional time series signal, feature extraction, including the ICA and the method based on wavelet packet.
Feature_Extraction
- 筛选的几篇脑电节律提取的文章,可以用于其它信号处理~ 【基于改进小波变换的EEG分析】【基于小波变换的动态脑电节律提取】【脑电信号的特征节律信号提取】【a、β、δ、θ和40Hz波实时检测器】-Screening of several EEG extracted article, can be used for other signal processing ~ 【EEG based on improved wavelet analysis】 【based on wavelet transf
locationP_QRS_T
- 基于小波变换的心电信号预处理 和PQRST波特征提取-PQRST wave of ECG preprocessing and feature extraction
wavelet-denoise
- 将小波变换应用于信号消噪,去除冗余分量后,提取信号主要特征-the wavelet can be applied to the signal denoise and feature extraction
xiaobobao-BPwangluo
- 小波包和BP神经网络在齿轮箱故障诊断中的应用,本文对齿 轮箱振动信号应用小波包分解提取故障特征向量,进一步用特征向量训练前向传播BP人工神经网络。-xiaobobao、BP、gearbox fault detection
xiaobobao-BP-zhoucheng-zhenduan-
- 基于小波包特征向量与神经网络的滚动轴承故障诊断。:基于故障轴承的特征提取,提出了将小波包分析与神经网络结合的滚动轴承故障诊断方法。对滚动轴承信号进行3层小波包分解,构造小波包特征向量作为故障样本,用训练好的BP神经网络进行故障诊断,试验结果表明,该方法能够有效地诊断出滚动轴承的故障类型。-Fault Diagnosis of Rolling Bearings Based on W avelet Packet Energy Eigenvector and Neural Network
Wavelet-Entropy
- 文中从小波变换的角度出发,通过在尺 度域上对信号能量的一种划分,引入了小波能谱与小波熵作为信号特征提取的特征量来反映系统信号的统计特征。实验结果表明,该算法能有效提取弹丸激波信号特征,速度快、准确率高,而且具有对噪声不敏感的优势。 -Paper, starting from the point of view of the wavelet transform, introduced by a division of the signal energy scale domain, wave
tzextraction
- 基于小波分析的信号特征提取,可以应用于多个领域-The extracted signal characteristics based on wavelet analysis can be applied to multiple areas
xiaobobaonengliangfenxi
- 小波包提取滚动轴承故障能量特征的matlab程序,大家只要把采集的滚动轴承振动信号数据放入程序中即可使用,希望对大家有所帮助。-Bearing Fault wavelet packet energy feature extraction matlab program, we just put a rolling bearing vibration signal collected data into the program to use, we want to help.
wavelet
- 用于提取小波特征的机械振动信号,很好地结合了特征提取和随机信号处理方法,附带数据,实测可用。-For extracting wavelet feature mechanical vibration signal, a good combination of feature extraction and stochastic signal processing method accompanying data, we found available.
基于小波包提取轴承故障
- 基于小波包变换对信号进行分解,提取机器轴承故障的特征信号进行损伤识别,(The signal is decomposed based on wavelet packet transform, and the characteristic signals of machine bearing faults are extracted to identify the damage,)
小波包能量谱
- 用于信号特征提取,提取信号的小波包能量谱(Extracting the wavelet packet energy spectrum of the signal)
基于多信号小波变换分解的特征提取
- 实现对振动信号的小波变换分解的特征提取。(The wavelet transform decomposition of vibration signal is realized to extract its features.)
xiaobo
- 对故障数据的小波包分解与信号重构、小波包能量特征提取 暨 小波包分解后实现按频率大小分布重新排列,并进行降噪处理。(After wavelet packet decomposition and signal reconstruction, wavelet packet energy feature extraction and wavelet packet decomposition, the fault data can be rearranged according to the frequ