搜索资源列表
all
- 模式识别分类器的设计,此为K均值法源码,经调试通过。所用数据为标准IRIS。
Fisher520
- 模式识别分类器的设计,此为fisher法源码,经调试通过。所用数据为标准IRIS。
LMS520
- 模式识别分类器的设计,此为LMS法源码,经调试通过。所用数据为标准IRIS。
模式识别的经典算法之一,感知器算法,用来对模式进行分类,采用matlab编写
- 模式识别的经典算法之一,感知器算法,用来对模式进行分类,采用matlab编写
classification
- 该程序包实现了几个常用的模式识别分类器算法,包括K近邻分类器KNN、线性判别方程LDF分类器、二次判别方程QDF分类器、RDA规则判别分析分类器、MQDF改进二次判别方程分类器、SVM支持向量机分类器。 主程序中还有接口调用举例,压缩包中还有两个测试数据集文件。-The package to achieve a number of commonly used pattern recognition classifier algorithms, including K neighbor class
SVMclassifier
- SVM分类器,用于对多维采样点进行分类。可根据类别数修改分类器,我们的模式识别作业。-SVM classifier, multi-dimensional sampling points used for classification. Can be modified according to the number of classification categories, and our pattern recognition operation.
Bayes
- 一个比较简单的模式识别问题。用female.txt 和male.txt 的数据作为训练样本集,建立Bayes 分类器,用测试样本数据set1.txt、set2.txt、set3.txt 对该分类器进行测试,分别应用单个特征及两个特征进行实验-A relatively simple pattern recognition problem. Female.txt and male.txt use data as a training sample set, the establishment of
1
- 这是一个模式识别,关于贝叶斯分类器实现的代码-This is a pattern recognition, Bayesian classifier on the realization of the code
fisher
- Fisher分类器,用于对多维采样点进行分类。可根据类别数修改分类器,我们的模式识别作业。-Fisher classifier, multi-dimensional sampling points used for classification. Can be modified according to the number of classification categories, and our pattern recognition operation.
prtools
- 一个强大的统计模式识别工具箱,包含高斯分类器,高斯混合模型,主成分分析,支持向量机等常见分类方法。-A powerful statistical pattern recognition toolbox, including the Gaussian classifier, Gaussian mixture model, principal component analysis, support vector machines and other common classification met
Bayes
- 贝叶斯分类实验,设计简单的线性分类器,了解模式识别的基本方法。掌握利用贝叶斯公式进行设计分类器的方法。-Bayesian classification experiment is designed to be simple linear classifier, know the basic methods of pattern recognition. Master the use of Bayesian classifier design formula method.
461518386Yale_PCASVM
- 程序包实现了几个常用的模式识别分类器算法,包括K近邻分类器KNN、线性判别方程LDF分类器、二次判别方程QDF分类器、RDA规则判别分析分类器、MQDF改进二次判别方程分类器、SVM支持向量机分类器。-svm apply to fenlei
模式识别第一次作业
- 1. 用 dataset1.txt 作为训练样本,用dataset2.txt 作为测试样本,采用身高和体重数据为特征,在正态分布假设下估计概率密度(只用训练样本),建立最小错误率贝叶斯分类器,写出所用的密度估计方法和得到的决策规则,将该分类器分别应用到训练集和测试集,考察训练错误率和测试错误率。将分类器应用到dataset3 上,考察测试错误率的情况。(1. using dataset1.txt as training samples as test samples by dataset2.tx
感知器算法
- 感知器算法是一种神经网络的模型,是20世纪50年代中期到60年代初人们对模拟人脑学习能力的一种分类学习机模型的称呼。当时的研究者认为它是一种学习的强有力模型,但以当时的技术无法实现非线性分类,许多实验室都放弃了感知器的研究。但其中的思想很经典,对后来的模式识别模型有很大的影响。当然,随着时代的进步,已经有很多学者提出了许多非线性的感知器改进算法,并取得良好效果,此程序主要基于Matlab来具体实现传统的感知器算法。(This program is based on Matlab to speci
模式识别分类器
- 贝叶斯识别,可对图像数据进行分类的算法,其中包含5个m文件(Bias recognition, image data can be classified algorithm, which contains 5 m files)
模式识别
- 简单的贝叶斯分类器,实现基于身高体重的男女性别分类(Simple Bias classifier)
BP神经网络+最小距离分类器
- BP神经网络算法,贝叶斯-最小距离分类器,可以用于模式识别。(BP neural network algorithm, Bayesian minimum distance classifier, can be used for pattern recognition)
kernelBP_chol
- 针对图像的基于核置信传播的分类器,具有收敛速度快,精度高的优点。(This is a sample code for Kernel Belief Propagation Classifier for images.)
模式识别代码
- 基于matlab的Iris、乳腺癌数据集的模式识别分类算法,含有 遗传算法+SVM、isodata、感知器算法、LMSE、神经网络等算法的实现代码,用于聚类效果良好,是模式识别大作业的参考资料(The pattern recognition classification algorithm based on MATLAB for Iris and breast cancer data sets contains the implementation code of genetic algorit
鸢尾花分类
- 使用四种方法进行鸢尾花分类:最小距离分类器,K 近邻法,感知器,Fisher 准则。(Four methods are used to classify iris: minimum distance classifier, K-nearest neighbor method, perceptron and Fisher criterion.)