搜索资源列表
music32
- 32阵元的MUSIC算法,基于特征空间分解,内有详细说明,供大家参考。-32 Element MUSIC algorithm, based on the decomposition of space, which is described in detail, for your reference.
@linear
- 针对SVM法线特征筛选算法仅考虑法线对特征筛选的贡献,而忽略了特征分布对特征筛选的贡献的不足,在对SVM法线算法进行分析的基础上,基于特征在正、负例中出现概率的不同提出了加权SVM法线算法,该算法考虑到了法线和特征的分布.通过试验可以看出,在使用较小的特征空间时,与SVM法线算法和信息增益算法相比,加权SVM法线算法具有更好的特征筛选性能.
FisherFace1
- 最经典的人脸识别中的fisherface代码,在此之前要对特征空间降维,通常采用PCA降维,此代码基于降维实现类间与类内比值的最大化。
LNMF
- 人工智能模式识别中基于非负矩阵分解生成特征空间的算法-artificial intelligence pattern recognition based on non-negative matrix factorization generation features of the algorithm space
NMF
- LNMF是基于“局部”非负矩阵分解生成特征空间的算法,而NMF是基于非负矩阵分解。-Matrix is based on a "partial" non-negative matrix factorization generation features space algorithm, which is based on the NMF non-negative matrix factorization.
colorspace
- 对于颜色空间中各种颜色空间的转换,用于提取颜色特征!MATLAB实现源码,效果不错!-For a variety of color space color space conversion, to extract color features! MATLAB source code to achieve good results!
VSM
- 向量空间模型算法,给定一个经过分词的文档集,可以输出向量空间模型、特征词典、倒排索引表等功能,很经典的VSM算法源代码-Vector space model algorithm, given a segmentation of the document set, you can output vector space model, the characteristics of dictionaries, inverted index table functions, it is the clas
linear_svm
- 该算法将实际问题通过非线性变换到高维的特征空间,在高维空间中构造线性判别函数,以替换原空间中的非线性判别函数,这样能保证机器有较好的推广能力,同时它巧妙地解决了维数问题,其算法复杂度与样本维数无关-The algorithm will be practical problems through the nonlinear transformation to high-dimensional feature space, in high-dimensional space in the struc
poly_svm
- 核函数是利用支持向量机解决不可分问题时引入的一种非线性变换的手段。基本思想是通过非线性变换,使样本变换之后的特征空间中变得线性可分。然后利用线性可分时构造最优超平面的方法,在特征空间中实现最优超平面的求解。-Kernel function is the use of support vector machine to resolve the issue can not be separated from the introduction of a nonlinear transform mean
m10_9
- 一维自组织特征映射网络对输入向量空间进行识别分类-One-dimensional self-organizing feature map network input vector space to identify categories
OSU_SVM3.00
- 支持向量机可用于数据约简以及分类,它是将原始空间的样本通过非线性映射变换到高维特征空间的方法-Support Vector Machines can be used for data reduction and classification, it is the original sample space through nonlinear mapping transformation to high-dimensional feature space method
LDAMatab
- 用matlab编写的lde算法,实现的数据分析,抽取分类信息和压缩特征空间维数-Lde prepared using matlab algorithm to achieve the data analysis, feature extraction classified information and compressed space dimension
KFDA
- 核Fisher鉴别分析方法(KFDA)。KFDA方法的基本思想是首先将原始训练样本通过一个非线性映射 映射到某一高维(可能是无限维)特征空间F中,然后在F中执行Fisher鉴别分析。-Nuclear Fisher discriminant analysis method (KFDA). The basic idea of KFDA method is the first original training data by a nonlinear mapping m
Meanshift_PAMI_2002
- 文章讨论了一种用于分析复杂的多态特征空间的非参数技术——Meanshift方法,并利用它进行了任意的形状聚类。-A general nonparametric technique is proposed for the analysis of a complex multimodal feature space and to delineate arbitrarily shaped clusters in it.
pca
- 通过确定特征值所张成的特征空间上的主成分分析方法,确定对确定输出变量间的输入变量的相互影响关系。-By determining the characteristic features of the value of the Zhang space on principal component analysis to determine the output variables in determining the input variables in our cases.
svm
- SVM方法的基本思想是:定义最优线性超平面,并把寻找最优线性超平面的算法归结为求解一个凸规划问题。进而基于Mercer核展开定理,通过非线性映射φ,把样本空间映射到一个高维乃至于无穷维的特征空间(Hilbert空间),使在特征空间中可以应用线性学习机的方法解决样本空间中的高度非线性分类和回归等问题。svm 程序,即支持向量机的代码。-The basic idea of SVM method are: the definition of the optimal linear hyperplane,
FFSM
- 浮动顺序搜索算法搜索特征空间生成候选子集-Sequential floating search algorithm to search a subset of the feature space generated candidate
area_length_tightness_eccentricity
- 对空间卫星、飞机等图像进行特征提取,提取的特征包括面积,周长,紧密度,及离心率-Space satellites, aircraft and other image feature extraction, the extracted features include area, perimeter, compactness, and eccentricity
PCA
- LPA是主成分分析算法,用于特征提取和特征空间的降维-LPA code for feature
score
- 对获得的512维小波特征进行了PCA降维处理,将特征空间降至100维,并采用前面得出的最佳系数针对多项式核函数和高斯径向基核函数-On access to the 512-dimensional wavelet features to reduce the dimension of the PCA, will feature space to 100 dimensions, and using the best coefficients obtained for the previous pol