搜索资源列表
Fraunhofer_diffraction_of_a_round_hole
- 圆孔的夫琅和费衍射,以动画的形式表式衍射的过程,以及最后衍射的图样(来源于http://luobo.ycool.com/post.701424.html)
CVRP-N
- 采用微粒群(粒子群/PSO)算法求解CVRP“车辆路径问题”的代码,对于中小规模算例能有很快的速度,对于大规模问题则效率偏低。文件包内附国际常用算例十余个。如有任何疑问,可以到http://2shi.phphubei.com.cn/index.php发帖咨询。-Using particle swarm (PSO/PSO) algorithm CVRP " vehicle routing problem," the code, for example small and me
CVRP-N
- 采用微粒群(粒子群/PSO)算法求解CVRP“车辆路径问题”的代码,对于中小规模算例能有很快的速度,对于大规模问题则效率偏低。文件包内附国际常用算例十余个。如有任何疑问,可以到http://2shi.phphubei.com.cn/index.php发帖咨询。-Using particle swarm (PSO/PSO) algorithm CVRP " vehicle routing problem," the code, for example small and me
DGPSO.rar
- 用于求解约束优化问题的算法,算法为差分进化/遗传算法/微粒群算法的融合。对于“[7] T. P. Runarsson and X. Yao, Stochastic ranking for constrained evolutionary optimization, IEEE Trans. Evol. Comput., vol. 4, no. 3, pp. 284-294, Sep. 2000”中给出的13个标准测试函数,均能得到问题最优解。如有任何疑问,请于http://2shi.phphube
GPSOtsp
- 采用遗传微粒群算法(GPSO)求解旅行商问题(TSP)的源代码。内附多个算例,本算法对于中小规模问题求解效率很高,对于大规模问题则效率略低。如有任何疑问,请于http://2shi.phphubei.com.cn/index.php发帖询问。-Genetic Particle Swarm Optimization (GPSO) for Traveling Salesman Problem (TSP) of the source code. Containing a number of examp
n-puzzle
- n-puzzle (8-puzzle, 15-puzzle, 24-puzzle) solution using A* algorithm. i have used 2 pass for reducing memory consumption by half. i will post it also on my blog http://rooparam.blogspot.com-n-puzzle (8-puzzle, 15-puzzle, 24-puzzle) solution using A*
particle
- 代码来自2008年数学建模东北赛区B题,原题描述http://www.ivanblog.cn/post/18.html 思想是用粒子群算法来实现相关问题的求解,编程语言是C++。-Mathematical modeling code from the 2008 Northeast Division B title, original title describes http://www.ivanblog.cn/post/18.html thinking is to achieve parti
Simple_GA
- 简单遗传算法的Matlab实现,适合GA算法入门使用,程序很简单,说明在程序的备注中,耐心点就能弄明白本代码转自:http://www.labfans.com/bbs/t11479/-Matlab implementation of simple genetic algorithms, it is an introductory GA algorithm, all the explanations are included in the*.m files in the form of remar
ex1
- 贝叶斯方法一篇比较科普的中文介绍可以见pongba的平凡而神奇的贝叶斯方法: http://mindhacks.cn/2008/09/21/the-magical-bayesian-method/,实际实现一个贝叶斯分类器之后再回头看这篇文章,感觉就很不一样。 在模式识别的实际应用中,贝叶斯方法绝非就是post正比于prior*likelihood这个公式这么简单,一般而言我们都会用正态分布拟合likelihood来实现。-pattern identification