搜索资源列表
mregress
- 最小二乘法回归,输入因、自变量,输出回归系数,T值,R平方等-least squares regression, imports, since the variables, output regression coefficient, T, R-squared, etc.
MLP
- 本程序实做MLP(Multi-layer perceptron)算法,使用者可以自行设定训练数据集与测试数据集,将训练数据集加载,在2、3维下可以显示其分布状态,并分别设定键节值、学习率、迭代次数来训练其类神经网络,最后可观看辨识率与RMSE(Root Mean squared error)来判别训练是否可以停止。
zhong
- 系统聚类算法K-means 属于聚类分析中一种基本的划分方法,常采用误差平方和准则函数作为聚类准则,该算法在处理大数据集时是相对可伸缩且高效率的,同时具有潜在的数据并行性。但是这种算法依赖于初始值的选择以及数据的输入顺序;此外,当运用误差平方和准则函数测度聚类效果时,如果各簇的形状和大小差别很大,为使误差平方和 Jc 值达到最小有可能出现将大的聚类簇分割的现象。-system clustering algorithm K-means cluster analysis is a basic met
Fortran_bp
- BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。-
labyrinth
- 迷宫图求解程序,九宫格,人工智能实验 可以在Prolog环境下,希望对大家有所帮助-Figure maze solver, squared, artificial intelligence experiments in Prolog environment, we want to help
ssd.m
- SSD - Sum of squared Differences
RLS_Noise
- Recursive Least Squared method is implemented this time by adding noise to input. This program objective is to identified parameters of third order transfer function.
Circle-Fit
- 这次上传的程序源码是关于根据给定的xy点,拟合一个圆,依据是半径平方偏差的和。-The upload program source code is about according to the given xy point, fitting a circle, based on the radius squared deviations and.
Rombergintegrationmethod
- 用龙贝格方法上级计算积分: 这里计算e的-x平方在0到0.8的积分,代码中f函数为被积函数,main函数中输入积分区间。 -Superior method of calculation using Romberg integration: This calculation of e,-x squared from 0 to 0.8 points in the code for the integrand function f the function, main function, en
ls
- 用LS算法实现共512个数据的预测,并得到误差平方的仿真图-LS algorithm with a total of 512 data, forecasts, and get squared error of the simulation diagram
RLS
- 用RLS算法实现自适应均衡器,画出一次实验的误差平方的收敛曲线,给出最后设计滤波器系数-RLS algorithm with adaptive equalizer, draw a single experiment squared error convergence curve of the final design of the filter coefficients are given
dm_demo
- MATLAB code on linear minimum mean square error (LMMSE) estimation and its application to the problem of channel equalization in digital communication systems. amr amin: code on the application of channel equalization in digital communication sys
amrandom
- This a random source code for delphi. Examples ramdom functions as follows: The following Random Number Generators: - Normal (Gaussian) - Gamma - Chi-squared - Exponential - Weibull - Beta - t - Mult
LSFS
- 有监督的特征选择和优化程序MATLAB代码,基于最小二乘算法。内有测试数据,和详细程序说明-Least-Squares Feature Selection (LSFS) is a feature selection method for supervised regression and classification. LSFS orders input features according to their dependence on output values. Dependency bet
j03_samsims
- Blind, Adaptive Channel Shortening by Sum-squared Auto-correlation Minimization (SAM)," IEEE Trans. on Signal Processing, December 2003. The two zip files below should be installed in parallel. -Blind, Adaptive Channel Shortening by Sum-squared
bpsk
- 层空时码有三种普遍的检测算法:最大似然(Maximum Likelihood ,ML)检测算法、迫零(zero forcing ,ZF)检测算法、最小均方误差(Minimum Mean Squared Error,MMSE)检测算法。-There are three layers in general space-time code detection algorithms: maximum likelihood (Maximum Likelihood, ML) detection algori
C_bp
- BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。-
Matlab_bp
- BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。-
gmdh_example
- GMDH_main为GMDH主函数; variable_Combin为输入层初始变量选为x1,x1^2,x1*x2,x2^2,x2时的输入变量矩阵值 variable_select计算X_train训练输入数据,Y_train训练输出数据,X_test测试输入数据,Y_test测试输出数据 Combin为求变量的两两组合 Sym_Combin为求符号变量的两两组合 PE_AIC求每层各神经元的参数估计W,及训练数据在参数估计后估计的输出out_train,测试数据在参数估计后
linear
- 基于最小平方误差逼近的线性阀体的设计linear body-Based on the minimum squared error approximation of the design of linear body