搜索资源列表
-
0下载:
关于rbf神经网络实现图像分类的IEEE英文文献 和大家一起分享-Image Classification using a Module RBF Neural Network
-
-
0下载:
Image classification using Backpropragation Neural Network with data training set and data testing
-
-
0下载:
This a sample of a simple image classification using K-Nearest Neighbor and Backpropagation Neural Network. It uses block averaging in feature extraction process.-This is a sample of a simple image classification using K-Nearest Neighbor and Backprop
-
-
0下载:
采用卷积神经网络在cifar-10图像库上进行的分类训练。效果非常好。-Convolution using trained neural network classification on cifar-10' s image library. The effect is very good.
-
-
2下载:
神经网络引入后,检测框架变得更快更准确。然而,大多数检测方法受限于少量物体。检测和训练数据上联合训练物体检测器,用有标签的检测图像来学习精确定位,同时用分类图像来增加词汇和鲁棒性。原YOLO系统上生成YOLOv2检测器;在ImageNet中超过9000类的数据和COCO的检测数据上,合并数据集和联合训练YOLO9-After the neural network is introduced, it is becoming faster and more accurate detection fr
-
-
1下载:
图片情感分析模型,基于卷积神经网络,以颜色特征为依据进行情感分类,图片情感极性分为积极和消极两类。(The model can extract the hue, brightness, contrast and other information from a picture to represent the emotional polarity of the image. The image sentiment analysis model is using convolution neura
-
-
1下载:
在CIFAR-10数据集上使用卷积神经网络进行图像分类(Image classification using convolution neural network on CIFAR-10 dataset)
-
-
1下载:
以python语言为基础,利用tensorflow机器学习架构,两层卷积神经网络实现,CiFar数据集图片分类功能。(Based on Python language, using tensorflow machine learning architecture, two-layer convolutional neural network, CiFar data set image classification function.)
-