搜索资源列表
SPARSKIT2.tar.gz
- 这是Yousef Saad编写的矩阵运算的Fortran软件包(A basic tool-kit for sparse matrix computations (Version 2),包含常见的排序,预处理(ILU分解等),Krylov子空间迭代法,以及有限差分等方法得到的算例等。有不少很实用的子程序(比如稀疏矩阵相加、相乘等等,可以学习专家的设计哟!)。极力向学习大型线性方程组数值解的人推荐(不足之处就是Fortran实现,本人觉得还是C语言好)。,Yousef Saad This is pr
ML_Automata
- Learning Automata Algorithms A collection of machine learning programs which contains some of Learning Automata algorithms such as Tsetline, Krinisky, Krylov, LRI, LIP, LRR, LReP, SoftMax, SampleAverage and Random strategy. All of these develope
ModelOrderReductionAlgorithms
- 自动控制方法中的状态空间模型参数降秩数学算法,分别为 SVD-based method; Krylov-based Order Reduction--Lanczos algorithm; Krylov-based Order Reduction--Modified Lanczos algorithm; Krylov-based Order Reduction--The Arnoldi-algorithm; -Model Order Reduction Algorithms f
Iterative_Methods_for_Sparse_Linear_Systems
- Yousef Saad 的稀疏线性系统的迭代方法。包含预处理,Krylov子空间迭代法等内容。-iterative methods for sparse linear systems
KrylovSubspceMethod
- Krylov subspace作为一种迭代方法,在求解非线性方程组方面发挥巨大作用,这个ppt和大家分享-Krlov subspace method
Arnoldi
- 快速的Arnoldi算法用于计算Krylov空间的生成-Arnoldi for Krylov space
Krylov
- Krylov Fixed Structure Automata in Cellular Automata Matlab Code
Newtons-Method
- 牛顿法的相关资料,包括直接法,krylov子空间法,broyden法-newton iterative methods
krylov
- Krylov numerical algorithm in CSharp
BICG
- BICG算法,是Krylov子空间的迭代方法之一-The BICG algorithm is one of the Krylov subspace iteration method
bigrad_stab_matlab
- In numerical linear algebra, the biconjugate gradient stabilized method, often abbreviated as BiCGSTAB, is an iterative method developed by H. A. van der Vorst for the numerical solution of nonsymmetric linear systems. It is a variant of the biconjug
learning_Automata
- L2N2, G2N2, Krinsky, Krylov, L4N4, ponomarev types of learning automata
iters
- 线性方程组的高效迭代方法,包括各种Krylov迭代-iteration method to solve the linear equations, including Krylov method
precon
- Krylov迭代方法的各种预处理方法,包括ILU0,ILUC等-the preconditioner of Krylov method
BILUM
- 多水平块预处理方法+Krylov迭代方法-Multi-Level Block ILU Preconditioning
ICOP
- 基于Krylov子空间的单点扩展模型降解算法,采用matlab编制。能够有效解决任意大系统的模型降解问题。-This algorithm is numerically efficient, thus suitable for large-scale systems, and does not require any simulation or expert knowledge of the original system. A Matlab code is presented.
bksvd-master
- block krylov 子空间近似 SVD 分解(Approximate SVD decomposition of block Krylov subspace)