搜索资源列表
mRMRFeatureSelection
- mRMR_0.9_compiled最小冗余和最大相关特征选取源代码,-This package is the mRMR (minimum-redundancy maximum-relevancy) feature selection method, whose better performance over the conventional top-ranking method has been demonstrated on a number of data sets in recent pu
mRMR_0.9_compiled
- mRMR(min-redundancy max-relevance)的matlab程序-matlab program of mRMR(min-redundancy max-relevance)
mrmr
- 特征选择的最大相关最小冗余算法,采用信息理论作为度量标准。-Feature selection algorithm for minimum redundancy and maximum correlation, the use of information theory as a metric.
mi.0.912
- 该算法用mrmr对支持向量机进行分类 简洁明了 用以理解(The algorithm uses mrmr to classify the support vector machine for simplicity)
fhgkj-master
- The matlab code mRMR use for feature selection
feature-selection-master
- 最小冗余最大相关性(MRMR)(MRMR.M) 需要外部库。详情请见MRMR。下载一个更新版本的互信息工具箱 偏最小二乘(PLS)回归系数(ReGCOEF.m) 使用MATLAB统计工具箱中的PLSReress ReliefF(分类)和RReliefF(回归)(ReleFracePr.M.) 从Matlab STATS工具箱中包装Releff.m。这是Matlab R2010B以后提供的。 ReliefF的另一个选择是使用ASU特征选择工具箱中的代码。这使用WEKA
FSLib_v6.0_2018
- 互信息的MATLAB代码,经典算法MIFS,MRMR等,能正常运行(MI MATLAB code MIFS,MRMR...)
mrmr最大相关
- mrmr最大相关最小冗余,matlab源程序