搜索资源列表
DE.python
- Python实现的差分进化算法源代码 使用Python实现的差分进化算法,引用到Numpy和Scipy,可以支持多核与集群并行计算。使用时只需继承DESolver并定义函数def error_func(self, indiv, *args)作为目标函数即可。-Python implementation of the differential evolution algorithm source code uses the Python implementation of the differ
Python-for-PSO-algorithm
- Python实现的粒子群优化算法源代码,需要引用到Numpy,需要对自定义问题进行优化只需要更改f6函数即可,智能算法本身的参数亦可以自行设定。-Python implementation of the PSO algorithm source code, you need to refer to Numpy, Custom issues need to be optimized to only need to change the f6 function, the smart algorith
LinearRegression
- 利用numpy库实现线性回归 并且带有正则化之后的线性回归处理功能 还有用最小角回归(LARS)算法实现了lasso回归-Numpy library implements the use of linear regression and linear regression with regularization after processing algorithms as well as the minimum angle of regression (LARS) to achieve a la
2dcollections3d_demo
- Python2.7 + numpy + matplotlib实现的三维图表demo 请确保本机已安装依赖环境- 3d graph demo by Python2.7+ numpy+ matplotlib please make sure dependent environment exist
accented_text
- Python2.7 + numpy + matplotlib实现的二维坐标图demo 请确保本机已安装依赖环境 -2d graph demo by Python2.7+ numpy+ matplotlib please make sure dependent environment exist
agg_buffer_to_array
- Python2.7 + numpy + matplotlib实现的多幅二维组图demo 请确保本机已安装依赖环境-2d graph group demo by Python2.7+ numpy+ matplotlib please make sure dependent environment exist
animation_demo
- Python2.7 + numpy + matplotlib实现的二维渐变色图表动画demo 请确保本机已安装依赖环境-2d colorfull graph animation demo by Python2.7+ numpy+ matplotlib please make sure dependent environment exist
AdaBoost
- 用python实现的AdaBoost分类算法,文件是一个ipython notebook,可以直接用ipython/jupyter打开使用。内附简单测试数据集。 程序运行需要numpy库的支持。-An AdaBoost classifier implemented with Python.
numpy-1.11.0
- numpy是科学计算的python实现,速度快,种类全-numpy python is the realization of scientific computing
FaceRecognition_CNN(olivettifaces)
- 将CNN应用于人脸识别的流程,程序基于Python+numpy+theano+PIL开发,采用类似LeNet5的CNN模型,应用于olivettifaces人脸数据库,实现人脸识别的功能-CNN is applied to the process of face recognition. The program is based on Python+ numpy+ theano+ PIL development, and uses CNN model like LeNet5, which is
neural-networks-and-deep-learning-master
- 用不同的方法实现了神经网络(没有用第三方库,就是用numpy等实现的,对于初学者来说是不错的深入了解神经网络的素材)(Using different methods to achieve the neural network (not using third square libraries, that is, using numpy and so on, for beginners is a good understanding of the neural network material))
dw_pyserial_work
- 利用python开发一款跨平台的串口通讯程序,基于串口线程的异步通讯。实现自动查找可用串口,数据帧的异步接收,数据分析和图形显示,可作为硬件调试用的上位机软件。(Using Python to develop a cross platform serial communication program, asynchronous communication based on serial thread. Automatic lookup of available serial ports, asy
MST.py
- 网络最小生成树算法,利用numpy实现,MST 矩阵模型(minimum spanning tree)
dataanalyse
- 利用pandas、numpy、scipy组建的数据分析工具。可以实现均值、频数、最大值、最小值、分位数等得统计。(Data analysis tools built by pandas, numpy and SciPy. The statistics of mean, frequency, maximum, minimum and quantile can be achieved.)
BP神经网络python简单实现
- 去掉神经元类,把功能合并入NetLayer类中,使用矩阵计算加快速度 调整代码实现批量训练方法。 优化程序中numpy库运算顺序,避免产生中间变量(Remove neuron classes, merge functions into NetLayer classes, and use matrix to calculate speed.)
ILearnMachineLearning.py-master
- 这个储存库是我的作品和与数据科学和机器学习相关的项目的集合。在我的脚本中,我主要使用python及其专用的库:pandas、numpy、scipy、sci kit learn、matplotlib、basemap plotly。我还用了一些d3进行数据可视化。我还尝试从sci kit学习库中定制算法实现(This repository is a collection of my works and projects related to Data Science and Machine Lear