搜索资源列表
stprtool.rar
- 统计模式识别工具箱(Statistical Pattern Recognition Toolbox)包含: 1,Analysis of linear discriminant function 2,Feature extraction: Linear Discriminant Analysis 3,Probability distribution estimation and clustering 4,Support Vector and other Kernel Machines,
wine
- pca-kmeans聚类 先将数据(wine,uci数据集)降维处理,在进行聚类-pca-kmeans clustering use the data of uci:wine.
cvap3.7
- a pca implementation of a algorithme of clustering some data to use this clusters in a futur treatements.
hokashyap_pca
- ho-kashyap pca normalization clustering algorithm
pca
- This file implement pca algorithm for dimension reduction and clustering techniques. Principle Component Analysis, Dimension reduction, clustering.
cluster-1.50.tar
- 数据挖掘聚类算法,kmeans,HC,pca, SOMs-Data mining clustering algorithm, kmeans, HC, pca, SOMs
Machine-Learning-Toolkit-Examples
- labview关于机器学习的案例,来源于NI lab,有多种方法:BP、Kernel pca、clustering、svm等等,值得大家学习。-labview on the case of machine learning, from the NI lab, there are a number of ways: BP, the Kernel the pca, clustering, svm, etc., is worth learning.
PatternRecognition
- (1)Bayes分类 已知N=9, =3,n=2,C=3,问x= 应属于哪一类? (2)聚类 使用c-均值聚类算法在IRIS数据上进行聚类分析 (3)鉴别分析 在ORL或Yale标准人脸数据库上完成模式识别任务。 用pca与基于核的pca(Kpca)方法完成人脸图像的重构与识别试验。-(1) Bayes classification Known N = 9, = 3, n = 2, C = 3, x = should ask which cat
network-clustering-network-intrusion
- 基于pca有监督kohonen网络的网络入侵聚类。里面包含有原代码和说明文件。-Based on pca supervised kohonen network clustering network intrusion
pca
- pca主成分分析,在多变量选择上效果较好,对数据的主成分进行分析,常用于分类、聚类、实验数据处理-pca principal component analysis in multivariate selection effect is good, principal component analysis of data, often used in classification, clustering, experimental data processing
pca
- pca算法原理介绍和仿真代码,主要用于数据的聚类,代码时用于图像上的聚类过程,聚类效果很好,就是有点慢-pca algorithm introduces the principle and simulation code, mainly for clustering data, a clustering process images on-time code, clustering works well, is a bit slow
lm
- 各种对图像的分类和聚类的方法,kmeas、knn、pca等,还有几种数据处理中的窗函数-Variety of image classification and clustering methods, kmeas, knn, pca, etc., there are several data processing window function
K-Means-clustering-and-pca
- 此代码为matlab代码,分为两个部分。第一部分实现K均值聚类算法应用它来压缩图像。在第二部分中,你将使用主成份分析法pca来实现人脸图像的低维表示。 -This code for the matlab code, is divided into two parts. The first part of the implementation of the K means clustering algorithm to compress the image. In the second par
xvvjukna
- 是本科毕设的题目,计算加权加速度,可实现对二维数据的聚类,信号维数的估计,结合pca的尺度不变特征变换(SIFT)算法。- The title of the commercial is undergraduate course you Weighted acceleration, Can realize the two-dimensional data clustering, Signal dimension estimates, Combined with pca scale invarian
iyqwzwdp
- 一种流形学习算法(很好用),ICA(主分量分析)算法和程序,用于信号特征提取、信号消噪,基于欧几里得距离的聚类分析,FIR 底通和带通滤波器和IIR 底通和带通滤波器,有借鉴意义哦,是学习pca特征提取的很好的学习资料,基于负熵最大的独立分量分析。-A fluid manifold learning algorithm (good use), ICA (Principal Component Analysis) algorithm and procedures, For feature extr
yevhpizm
- 这个有中文注释,看得明白,借鉴了主成分分析算法(pca),关于小波的matlab复合分析,用MATLAB实现动态聚类或迭代自组织数据分析,IDW距离反比加权方法,有CDF三角函数曲线/三维曲线图,正确率可以达到98%。-The Chinese have a comment, understand it, It draws on principal component analysis algorithm (pca), Matlab wavelet analysis on complex, Usi
tcyzmqyb
- 正确率可以达到98%,通过虚拟阵元进行DOA估计,连续相位调制信号(CPM)产生,微分方程组数值解方法,包含CV、CA、Single、当前、恒转弯速率、转弯模型,基于欧几里得距离的聚类分析,考虑雨衰 阴影 和多径影响,借鉴了主成分分析算法(pca)。- Accuracy can reach 98 , Conducted through virtual array DOA estimation, Continuous phase modulation signal (CPM) to produce
bweqrmdv
- 相关分析过程的matlab方法,随机调制信号下的模拟ppm,调试通过可以使用,利用自然梯度算法,结合pca的尺度不变特征变换(SIFT)算法,处理信号的时频分析,D-S证据理论数据融合,可实现对二维数据的聚类。- Correlation analysis process matlab method, Random ppm modulated analog signal under Debugging can be used, Use of natural gradient algorithm,
giegie_v68
- 借鉴了主成分分析算法(pca),基于欧几里得距离的聚类分析,music高阶谱分析算法。- It draws on principal component analysis algorithm (pca), clustering analysis based on Euclidean distance, music higher order spectral analysis algorithm.
machine-learning-ex7
- Andrew Ng Cousera 机器学习K-means勇于图像压缩 以及主成分分析pca用在人脸识别,源代码以及说明文档。(Andrew Ng Cousera machine learning , the K-means clustering algorithm and apply it to compress an image. In the second part, you will use principal component analysis to find a low-dime