搜索资源列表
GINISVMv1.2
- SVM经典调试程序,内有说明,应用简便,可用做回归分类方面的计算-SVM classic debugger, with a descr iption of applications is simple and can be used for classification of return calculation
olsvm
- svm 多类分类 输入多种色点,能够准确的按颜色分类 C#语言描述
Digit-recognizer---knn-a-svm
- matlab中分别使用knn(k近邻)与svm(支持向量机)实现的对手写数字识别的二分类器-Digit recognizer(KNN and SVM) developed in matlab
libsvm3
- 台湾林智仁编写的支持向量机开源程序,可用于分类(C-SVC,nu-SVC,one-class SVM)和回归(epsilon-SVR,nu-SVR)。这是最新版本3.0。-Libsvm3.0 is a simple, easy-to-use, and efficient software for SVM classification and regression. It solves C-SVM classification, nu-SVM classification, one-cla
c_mean
- 基于SVM的数据分类,通过IRIS数据进行验证,效果分类准确-SVM-based data classification, through the IRIS data validation, classification accuracy results
SVC-and-SVR
- 基于SVM数据分类及回归分析,并采用不同的核函数如RBF,sigmoid,polynomial等-the data classification and regression analysis based on SVM, by using different kinds of kernel functions, for examples, RBF,sigmoid and ploynomial and so on
svmpredict
- 支持向量机源代码,svm预测,使用libsvm进行分类,优化libsvm的各种参数-svm predict
classify
- SVM的数据分类预测——意大利葡萄酒种类识别-SVM prediction data classification- Italian wines Recognition
liblinear-1.94
- liblinear1.94支持向量机的分类器-liblinear SVM classifier
OSU_SVM3.00
- SVM工具箱 用于SVM算法做分类 线性建模,非线性软测量建模-SVM Toolbox
Spectrum_Sensing_of_SVM-
- 有认知无线电CR的论文和Matlab代码,进行传统频谱感知算法的能量检测实现与SVM分类算法实现,两个进行对比检测概率性能,还有生成SVM三种核函数的分类检测图与统计三个错误率,得出SVM算法优于能量检测算法-Cognitive radio CR papers and Matlab code, perform traditional spectrum sensing algorithms to achieve energy detection and SVM classification alg
ptovides_matlab_SVM
- SVM的matlab接口.为利用SVM进行分类提供了一个matlab的环境-SVM matlab interface for using the SVM classification provides a matlab environment
SMOTE
- Python语言实现针对不平衡分类的SMOTE升采样算法,并通过SVM实现分类(We implements the SMOTE over-sampling algorithm via Python language for unbalanced classification, and achieves the classification of Glass data through SVM algorithm.)
支持向量机(Support Vector Machine, SVM)
- 支持向量机(support vector machine,SVM)是由Cortes和Vapnik在1995年提出的,由于其在文本分类和高维数据中强大的性能,很快就成为机器学习的主流技术,并直接掀起了“统计学习”在2000年前后的高潮,是迄今为止使用的最广的学习算法。(Support vector machine (support vector machine, SVM) is proposed by Cortes and Vapnik in 1995, because of its powerf
rbf-svm.py
- 通过SVM可以对两个半月形的数据簇进行分类(By using SVM, two semilunar data clusters can be classified.)