搜索资源列表
mattrack
- 用CNN和DSP实现视频序列目标跟踪,matlab仿真源代码,细胞神经网络实现了图像处理。
Motion-Detection
- 检测识别视频中的动态物体,比如人体和车辆,可用于监控处理-Detection and identification of dynamic objects in the video, such as humans and vehicles, can be used to monitor treatment
AForge.NET
- C#开发的计算机视觉及人工智能领域的一个功能非常强大的类库,包括图像处理库、计算机视觉库、机器学习库、视频处理库等。-AForge.NET Framework is a C# framework designed for developers and researchers in the fields of Computer Vision and Artificial Intelligence- image processing, computer vision, neural networks
LPR-mobile
- 视频车辆牌照识别,包含汉字处理算法,BP神经网络设计。识别率高达90%以上。-Video vehicle license plate recognition, including the Chinese characters processing algorithms, BP neural network design. Recognition rate as high as 90 .
mmread
- 用来处理matlab读取某些编码的视频时候出现的重影现象,可以消除重影,得到完整的视频帧-Matlab code used to process the video to read some of the ghosting occurs when, can eliminate ghosting, get the complete video frame
123
- 智能交通系统中基于视频图像处理的车辆检测与跟踪方法综述-Intelligent transportation systems based on video image processing of vehicle detection and tracking methods were reviewed
tracking
- 视频图像跟踪,一种高效的视频图像跟踪程序-Video image tracking, an efficient video image tracking program
Studysurvey-on-movingobjectdetection
- 学术论文:运动目标检测是当前研究热点之一,被广泛地应用于计算机视觉、视频处理等领域。将 运动目标检测的三种常用方法进行对比,总结其各自的适用性及局限性-Papers: moving target detection is one of the current research focus is widely used in the field of computer vision, video processing. Compared three common methods of movi
zhinengjiaju
- 系统由视频采集模块,数据处理模块,图像传输模块,图像显示模块,图像保存模块组成。-System consists of video acquisition module, data processing module, image transmission module, image display module, image store module.
catch-vedio
- 视频捕捉,捕捉视频数据流。实时传出,便于处理数据流-Video Capture
NatureDeepReview
- 深度学习允许由多个处理层组成的计算模型来学习具有多个抽象层次的数据表示。这些方法极大地提高了语音识别、视觉对象识别、目标检测以及药物发现和基因组学等许多领域的最新进展。深度学习发现复杂的结构在大数据集,通过使用反向传播算法来指示一台机器应该如何改变其内部参数,用于计算在每一层的代表性,从上一层的代表。深层卷积网在处理图像、视频、语音和音频方面取得了突破性进展,而递归网络则在文本和语音等连续数据上起到了作用。(Deep learning allows computational models th