搜索资源列表
CHAP4_3
- 采用将BP神经网络的学习算法应用于PID控制中,使BP神经网络与PID控制算法结合起来,通过吸收两者的优势,使系统具有自适应性。这样系统可自动调节控制参数,更好地适应输入变量的变化,提高控制性能和可靠性。本文从BP神经网络的基本构成原理、学习规则和学习算法出发,设计了基于BP神经网络的PID控制器,并对其进行了仿真分析,结果表明,该控制方案可行、有效。-We apply the learning algorithm of BP neural network to the PID control,
ga-PID
- 遗传算法是1962年由美国Michigan大学的Holland教授提出的模拟自然界遗传机制和生物进化论而形成的一种并行随机搜索最优化方法[1-3], 在自动控制领域中得到了越来越广泛的应用。该文引入了“稳定区域算法”求取闭环系统稳定的PID控制器参数区间,并以此算法的计算结果限定进 化算法的参数寻优区间,通过仿真试验取得了令人满意的控制效果。-Genetic Algorithms is proposed by the University of Michigan’s Professor
car
- Freescale智能车程序,选择16位微处理器MC9S12PG128,实现了自动寻迹,PID算法控制-Freescale intelligent vehicle program, select 16-bit microprocessor MC9S12PG128, to achieve the automatic tracing, PID control algorithm