搜索资源列表
pca
- pca算法的python实现以及相关实验数据-machine learning pca
python-code-for-Machine-learning
- 用于机器学习的全方位python代码,包括K-近邻算法、决策树、朴素贝叶斯、Logistic 回归 、支持向量机、利用 AdaBoost 元算法提高分类性能、预测数值型数据:回归、树回归、利用 K-均值聚类算法对未标注数据分组、使用 Apriori 算法进行关联分析、使用 FP-growth 算法来高效分析频繁项集、利用 PCA 来简化数据、利用 SVD 简化数据、大数据与 MapReduce-The full range of python code for machine learning
k_means
- 主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。(It is a statistical method. Through orthogonal transformation, a set of variables that can be correlated can be transformed into a group of linearly irrel