搜索资源列表
-
0下载:
Simple VaR Calculator provides:
- Evaluation of return distribution of single asset or portfolio of assets
- Volatility forecasts using moving average and exponential algorithm
- Value at Risk of single asset or portfolio measurement
-
-
0下载:
Calculates adaptive autoregressive (AAR) and adaptive autoregressive moving average estimates (AARMA) of real-valued data series using Kalman filter algorithm.
REFERENCE:
A. Schloegl (2000), The electroencephalogram and the adaptive autoregre
-
-
3下载:
传统的脉搏血氧R值提取大多采用脉搏波的峰谷值法.一个脉搏周期的峰谷值往往不能反映真实的R值,因此通常采用多个周期峰谷值的平均来提高R值的精度。提供了移动平均算法进行脉搏血氧信号特征值提取源码。-Traditional pulse oximetry R value extraction most of the peak value of the pulse wave method. A peak value of pulse cycles often do not reflect the true
-
-
0下载:
需求预测算法,时间序列中移动平均算法.matlab编写,代码全. 待整理-Demand forecasting algorithm, time series moving average algorithm Matlab to write code for the whole to be processed
-
-
0下载:
本程序是matlab滑动平均算法。用于去除低频干扰。-This procedure is the matlab moving average algorithm.Used to remove the low frequency interference.
-
-
0下载:
关于滑动平均算法关于功率谱计算程序,初步演示了滑动平均算法的计算过程-About moving average algorithm on the power spectrum calculation procedures, the initial presentation of the moving average calculation algorithm
-
-
1下载:
卡夫曼自适应移动平均线MATLAB代码
SMA:Simple MA 简单平均线
EMA:Exp MA指数平均线
AMA:Adaptive MA 卡夫曼自适应移动平均
算法过程
卡夫曼自适应移动平均算法过程整理
对比测试代码(测试数据使用HS300指数,数据直接从Yahoo上下载):-Kaufman adaptive moving average MATLAB code
SMA: Simple MA Simple Average
EMA: Ex
-
-
2下载:
设计音频降噪算法,并用MATLAB仿真实现。
1)读入一段音频后添加噪声,必须包括两种不同的噪声,信噪比:0dB~10dB;
2)分别采用滑动平均滤波器,直接频域滤波,以及谱分析后设计滤波器滤波三种方法实现,并对比效果。
3)给出各种方案的设计依据、代码、频响曲线,以及输入输出对比图。-Audio noise reduction algorithm design, and use MATLAB Simulation.
1) Read after adding noise int
-
-
0下载:
使用本章学习的K-平均算法,以颜色分量(或几何性状)作为坐标参数,对景象图进行聚类分析,要求最后的分类结果将路标(可能包括少量相似区域)聚类为一个模式类别。要求给出样本模式点,绘制坐标图(标出各个聚类中心的迭代移动轨迹),绘制算法框图,给出结论。并检查上机结果。-Use this learn K - average algorithm to color components (or geometric characters) as coordinate parameters, clusteri
-
-
0下载:
Kmeans算法是一个重复移动类中心点的过程,把类的中心点,也称重心(centroids),移动到其包含成员的平均位置,然后重新划分其内部成员。(The Kmeans algorithm is a process of repeating the center point of a moving class, moving the center of the class, also known as centroids, to the average position of its member
-