搜索资源列表
K-Means
- K-MENAS算法是最简单的聚类算法,适合对于初学者的学习和改进使用-K-MENAS algorithm is a clustering algorithm is the most simple, suitable for beginners to learn and use improved
FCM
- FCM算法是模糊聚类算法,是在对K-MEANS算法的基础上改进的聚类算法,比L-MEANS算法有更好的效果-FCM algorithm is a fuzzy clustering algorithm, clustering algorithm is improved based on the K-MEANS algorithm, the L-MEANS algorithm is better than the effect of it
k-means-original
- k-menas算法是最简单的聚类算法,算法内详细介绍了各个函数和功能,对初学者很有借鉴意义-K-MEANS algorithm is one of the most simple clustering algorithm, there are different form, this is one of them, a reference for beginners
clustering
- R语言聚类算法,数据挖掘,可以直接运行!!欢迎下载-R language clustering algorithm, data mining, can be directly run!!!!!Welcome to download
FCM
- 核聚类算法:聚类是将一组给定的未知类标号的样本分成内在的多个类别,使得同一类中 的样本具有较高的相似度,而不同类中的样本差别大。侧重于软聚类(模糊C-均值——FCM),但其描述手段同样适合于硬聚 类(HCM)等同类问题。-Clustering algorithm: cluster is a group of unknown samples given class label into internal multiple categories, so that the same class
dbscanamatlab
- dbscan的matlab实现,dbscan密度聚类算法的快速实现聚类,计算速度有所加快,能快速聚类。-dbscan matlab realize, quickly realize clustering dbscan density clustering algorithm to calculate the rate has accelerated, rapid clustering.
ClusteringCpp
- 聚类算法,主要用于DBSCAN聚类,基于C++环境-clusterting by c++
Desktop
- K均值聚类算法,对风电机组功率数据进行聚类分析,包括详细的程序说明。 只要把这两个文件放入一个空文件夹下,在MATLAB中执行m文件,就可得到聚类结果。-K-means clustering algorithm, the wind turbine power data clustering analysis, including a detailed descr iption of the procedures. As long as these two files into an empt
MultKmeans
- 改进的K-means聚类算法。用于处理空间聚类问题。-The improved K means clustering algorithm.To deal with spatial clustering problem.
自适应模糊C均值聚类
- 提供一种改进的模糊C均值聚类算法,该算法可以更好的提高聚类的精度
K_Means
- K-Means是聚类算法中的一种,其中K表示类别数,Means表示均值。顾名思义K-Means是一种通过均值对数据点进行聚类的算法。K-Means算法通过预先设定的K值及每个类别的初始质心对相似的数据点进行划分。并通过划分后的均值迭代优化获得最优的聚类结果。(K-Means is one of the clustering algorithms, in which K represents the number of classes, and Means means the mean. As t
Clustering-master
- 超级强大的聚类算法+详细的程序说明; Kmeans聚类+ISODATA聚类算法;(Super powerful clustering algorithm + detailed program descr iption; Kmeans clustering +ISODATA clustering algorithm;)
apcluster.m
- ap算法完成ap聚类操作 需要输入参数为数据集 偏向参数 输出结果为聚类数目(The AP algorithm completes the AP clustering operation, the input parameter is the data set bias parameter, and the output result is the number of clusters)
基于粗糙集的层次聚类算法研究
- 实现了两种基于粗糙集模型的层次聚类算法,采用java编程语言实现(Hierarchical clustering algorithm for categorical data using a probabilistic rough set model)
textclustering-master
- 对于大文本进行挖掘聚类,该方法不考虑文字词语出现的频率信息,考虑上下文语境,将所有的字根据预定义的特征进行词位特征学习,获得一个训练模型。然后对待分字符串的每一个字进行词位标注,最后根据词位定义获得最终的分词结果。(Digging for large text clustering, the method does not consider the text word frequency of information, considering the context, all the words
EWKM
- 子空间聚类算法EWKM (Entropy Weighting K-Means) 在matlab上的实现。(Entropy Weighting K-means which is one of the subspace clustering algorithm written in Matlab.)
K-means
- 一种聚类算法:K-means聚类,实测绝对没有问题(A clustering algorithm: K-means clustering, no problem is absolutely no problem)
chinese_text_cluster-master
- 基于中文文本的机器学习聚类算法的实现,包括LDA算法等(Chinese Text Clustering)
AP聚类算法和案例
- ap聚类算法实现三维数据点的分类,demo为案例(AP clustering algorithm realizes the classification of data points, demo as a case.)
DBSCAN
- 名称:DBSCAN经典聚类算法 功能:聚类数据集 类别:密度聚类算法(Name: DBSCAN Classic Clustering Algorithm Function: Clustering dataset Category: Density Clustering Algorithm)