搜索资源列表
ARMAwithNExT
- 自然激励下建筑结构的模态参数识别,首先通过自然激励技术(next)得到结构的自由响应,然后由自回归滑动平均(arma)方法识别模态参数。-natural incentive structures under the modal parameter identification, First through natural incentive Technology (next) to be free to respond to the structure, then autoregressive
Captain_for_matlab7_0
- 动态时间序列分析工具包.包括有ARMA,harmonic model,kalman filter等方法
armodel_psd
- 用AR模型法进行功率谱估计的各种算法比较,包括自相关法,BURG法,ARMA模型估计,PISARENCO谐波分解法
An-Unequal-Clustering-Algorithm-
- 一种基于ARMA的WSN非均衡分簇路由算法-An Unequal Clustering Algorithm in Wireless Sensor Networks Based on ARMA
4643df097701
- arma 实现了数据从文件的输入,ar模型预测,arma模型预测,卡尔曼滤波器模型预测,利用图形用户界面编写-Realized the data from the file input, ar model predictions, arma model prediction, Kalman filter model predictions, using a graphical user interface for the preparation of-arma matlab实现了数据从文件的输入
do_GARCH2
- Calculates various ARMA-GARCH models for a specified returns time series. Output: model matrix with tests on model residuals and AIC BIC criteria
vol
- matlab金融时间序列ARMA建模 结果分析: 1.预测结果从第四步开始,预测值不再改变,因为ARMA是收敛的回归模型,而我们做的工作并不是模拟,所以,当预测步长足够长时,它最终将收敛于一个不变得预测值 2.既然预测值一样,为什么还原为成交量后,在置信区间下预测的最大值与预测均值的差比预测均值与最小值的差要大?因为将对数差分值还原时,需用到的指数函数为凹函数-matlab Financial Time Series the the ARMA modeling results Ana
RadomDisplacement
- 本软件根据路面功率谱,采用ARMA模型给出车辆路面激励随机位移,能够根据不同车辆类型生成路面激励位移,车辆振动荷载-Power spectum density for arma model
sim_ARMA(p-q)
- 时间序列移动平滑方法ARMA(p,q),可用于金融领域的时间序列数据预测-time series method ARMA(p,q),which is used for prediction
arima_vba
- arma 分析算法源码,vba编程,广泛用在经融模型预测。-arma visual basic examples.
ARMA-kalman
- 先对数据进行ARMA建模,再在ARMA建模的基础上进行Kalman滤波已经运行通过,而且效果很好-ARMA modeling data first, and then on the basis of ARMA modeling performed by the Kalman filter has been running, and the effect is very good
ARMA-model-and-random-Walk-model
- 使用ARMA模型进行时间序列数据进行建模并预测-ARMA model is used to model and predict the time series data
R
- 1、根据财务因子选择10只股票,具体财务因子不限;2、运用投资组合理论建立投资组合,计算出每只股票的权重(协方差、相关系数);3、将构建的投资组合收益率与指数对比,计算看是否存在超阿尔法收益;4、将构建的投资组合收益率序列建立模型(ARMA、GARCH等),并预测未来一周、一月的收益率;(1, according to the financial factor selection of 10 stocks, the specific financial factor is not limited