搜索资源列表
pidbaseondsp
- 编写基于DSP的PID汇编子程序,基于CC4.0的软件仿真器Simulator调试程序,并用CC4.0的Graph功能观测PID控制器的输出波形。-prepared DSP-based PID compilation subroutine, Based on the CC4.0 Simulator Simulator software debugging procedures, CC4.0 using the Graph function observation PID controller o
newpid
- 在vc环境下实现温度、液位等参数控制的PID程序,程序中实现了增量式PID控制算法,设定值或参据量可以通过一个函数获取。-in vc environment temperature, liquid level parameters such as PID control procedures, process to achieve the incremental PID control algorithm, the set value or volume parameters according
PID_Simulink
- PID程序,希望对大家有帮助,是我自己实验做的 -PID
ziegler
- 使用ziegler函数可以直接设计出系统的PID类控制器-Use the ziegler function can be directly designed PID class controller
RLS_NEW
- In this study, a design methodology is introduced that blends the classical PID and the fuzzy controllers in an intelligent way and thus a new intelligent hybrid controller has been achieved. Basically, in this design methodology, the classical PID a
pid_way
- 通过labview的PID功能块对伺服电机进行闭环控制-The PID function block via labview servo motor closed-loop control
single-neuron-PID-control-
- 本资料包含基于Hebb学习的单神经元PID的M代码,使用改代码可以直接导入S函数中-This information contains a single neuron PID learning based on the M Hebb code, using the code can be directly imported into the S function.
305
- 易语言编译时间查看源码例程程序调用API函数查看程序的编译时间和当前进程PID。 -Easy language to compile time to view the source routine procedures call API function to view the program s compilation time and the current process PID.
PID-inverted-pendulum
- 图形化编程,利用PID算法实现倒立摆的功能。 5秒内实现倒立,参数可调,可抗干扰,拨动可复位-Graphical programming, using PID algorithm to achieve the function of inverted pendulum. 5 seconds to achieve inverted, adjustable parameters, anti interference, a reset
PID
- PID控制器参数主要是人工调整,这种方法不仅费时,而且不能保证获得最佳的性能。PSO已经广泛应用于函数优化、神经网络训练、模式分类、模糊系统控制以及其它应用领域,本案例将使用PSO进行PID控制器参数的优化设计。-The main parameters of PID controller are manual adjustment. This method is not only time-consuming, but also can not guarantee the best perfor
PID
- 专家控制 求二阶传递函数的阶跃响应 G(s)=133/(s^2+25s),取采样时间为1ms进行离散化。设计专家PID控制器,并进行Matlab仿真。(Expert control Find the step response of the second-order transfer function G(s)=133/(s^2+25s), and take the sampling time as 1ms for discretization. Design expert PID contro