搜索资源列表
EMnormmixtest
- 经典的EM算法程序,用于正态混合分布模型的参数估计,希望能够对大家有帮助!-classic EM algorithm for the Normal Distribution hybrid model parameter estimation, we hope to be able to help!
em
- 混合高斯概率密度模型,其参数估计可以通过期望最大化( EM) 迭代算法获得。-EM estimation parameters Gaussian mixture processes
speech-emotion-recognition-system
- gmm模型下的语音情感识别系统,GMM只是一个数学模型,只是对数据形态的拟和,但是和你所看到的数据分布存在出入也是正常的,因为用EM估计GMM的那些参数时,一般假设我们所得到的数据是不完备的(也就是说假设我们看到的数据分布不是真正的分布,它在运算时把那部分丢失或者叫隐藏的数据“补”上了)-gmm model speech emotion recognition system, GMM is a mathematical model, but fitting the data form, but
lab6
- 在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。
vbemgmm
- 在混合高斯模型参数估计方法上有很多方法,例如最大似然函数的EM算法,但是该算法容易出现过拟合,故本文提出了一个变分EM的算法来对参数进行估计,可以避免EM算法中的不足。 下面的示例文件中说明了使用下面的示例文件说明了用法 examplevbem,VBEM M示例文件 faithful.txt数据集为例(The parameters of Gauss mixture model estimation method has a lot of methods, such as the maxim