搜索资源列表
zernike_coeffs
- 在matlab里利用逆矩阵算法对于一个给定的波前来算它的泽尼克系数-Zernike Polynomial Coefficients for a given Wavefront using Matrix Inversion in Matlab
shujufenxiyutongji
- 这是用matlab实现的数据分析和统计程序,包括:用线性回归法估计一个因变量与多个自变量之间的线性关系,用多项式回归法估计一个因变量与一个自变量之间的多项式关系等-This is achieved using matlab data analysis and statistical procedures, including: linear regression estimation one dependent variable with more than a linear relations
MATLAB
- zernike 多项式的一部分程序,此程序用Matlab编写,能很好的实现功能-zernike polynomial part of the program, this procedure to prepare to use Matlab, can achieve a good functional
cssb
- LabVIEW及MATLAB混合编程,可以实现有理多项式法模态参数识别功能-LabVIEW and MATLAB mixed programming, Rational Polynomial Method Modal parameter identification function
zernike
- 泽尼克多项式来表示波前形状,此程序运用matlab求得泽尼克多项式系数- Searched: Entire Web Site Advanced Search Results 1 through 9 of 9 Zernike Polynomial Coefficients for a given Wavefront using Matrix Inversion in Matlab
ThrSample2
- 第二类样条插值多项式源代码,用于科学计算与数据处理,含有详细注解说明,可供matlab学习者参考。-The second category spline interpolation polynomial source code for scientific computing and data processing, contains a detailed descr iption of annotations available matlab learners.
Matlab-project
- roots -Polynomial roots Syntax r = roots(c) Descr iption r = roots(c) returns a column vector whose elements are the roots of the polynomial c. Row vector c contains the coefficients of a polynomial, ordered in descending powers. If c has n
function-dyb
- 用Matlab编程,实现解决该问题的单样本训练BP网络,设置一个停止迭代的误差Emin和最大迭代次数。在调试过程中,通过不断调整隐层节点数,学习率η,找到收敛速度快且误差小的一组参数。产生均匀分布在区间[-4,4]的测试样本,输入建立的模型得到输出,与Hermit多项式的期望输出进行比较计算总误差(运行5次,取平均值)-Using Matlab programming, to solve the problem of single sample training BP network, set
The-three-spline-interpolation
- MATLAB实现线性插值、多项式插值、样条插值三种方法-MATLAB linear interpolation, the polynomial interpolation, three methods to spline interpolation
chapter4
- TSP是典型的NP完全问题,既其最坏情况下的时间复杂度随着问题规模的增大按指数方式增长,到目前为止还未找到一个多项式时间的有效算法。(TSP is a typical NP complete problem, and its worst-case time complexity increases exponentially as the problem size increases. So far, no polynomial time efficient algorithm has been