搜索资源列表
EMforTVAR
- 基于期望最大迭代算法的对时变AR模型的卡尔曼平滑估计-EM Algorithm for Time-varying AR model
EM
- 该算法利用概率论中最大似然估计实现EM算法,通过对理论图像和统计图像的比较得出结果。-The algorithm uses the probability of the maximum likelihood estimate EM algorithm, the results of the comparison of theoretical imagery and statistical image.
EM
- em算法, 关于C++的,请大家看看,好的话评论下。-em algorithm
EM-cPP
- 这是用C++实现的EM算法,简单易用,对于理解EM算法很有用,尤其是对于初学者。-This is the EM algorithm implemented with C++, easy to use, useful for the understanding of the EM algorithm, especially for beginners.
vbemgmm
- 在混合高斯模型参数估计方法上有很多方法,例如最大似然函数的EM算法,但是该算法容易出现过拟合,故本文提出了一个变分EM的算法来对参数进行估计,可以避免EM算法中的不足。 下面的示例文件中说明了使用下面的示例文件说明了用法 examplevbem,VBEM M示例文件 faithful.txt数据集为例(The parameters of Gauss mixture model estimation method has a lot of methods, such as the maxim
GMM
- matlab 实现GMM——EM算法,自动生产混合高斯分布,GMM算法的示例demo(matlab em gmm,Automatic production of mixed Gauss distribution, an example of GMM algorithm demo)