搜索资源列表
AntNet
- 一种基于蚁群聚类的径向基神经网络 提出了一种基于蚁群聚类算法的径向基神经网络. 利用蚁群算法的并行寻优特征和挥发系 数方法的自适应更改信息量的能力,并以球面聚类的方式确定了径向基神经网络中基函数的位置, 同时通过比较隐层神经元的相似性、合并相似性较为接近的2 个神经元来约简隐含层的神经元,以 达到简化径向基神经网络结构的目的. 实验比较了几种不同聚类算法的径向基神经网络,结果表 明,所提神经网络的整体训练时间至少可缩短40 % ,学习的准确率可提高1 %以上,而且网络结构
MarKov
- 一种基于Markov链模型的动态聚类方法-a Markov chain model based on the dynamic clustering method
javann2132
- 模糊数学中的模糊聚类的方法对数字进行分类
加权欧氏距离及其应用
- 聚类算法中常用欧氏距离,这篇文章描述了使用加权的方法。-clustering algorithm common Euclidean distance, this article describes the use of weighted method.
一种无距离函数聚类方法
- 聚类算法大部分都使用距离来计算相似度,本文探讨了无需使用距离的方法。-clustering algorithm used to calculate similarity distance, the paper discusses the need to use the distance.
一种新的聚类分析距离算法
- K均值是一个预先知道类数的算法,需要具备专业知识,不现实。本文提出一个确定类数的方法。-K is a means to know in advance the number of categories algorithm, requires expertise and unrealistic. This paper presents a number of categories to determine the method.
KMeansJava
- 利用Java实现的K-均值算法,K-Mean 分群法是一种分割式分群方法,其主要目标是要在大量高纬的资料点中找出 具有代表性的资料点;这些资料点可以称为群中心,代表点;然后再根据这些群中心,进行后续的处理,可用于数据挖掘中的聚类分析-Java implementation using K-means algorithm, K-Mean grouping method is a fragmented grouping method, whose main goal is to a large nu
kmeans
- 改进的k-means方法,对聚类的实例节能型加权 少数类多数类的函数-Improved k-means method for clustering a small number of examples of energy-saving type of weighted majority of types of function
FCM
- 模糊C均值聚类实现,此乃聚类的其中一种方法-fcm
mhjl
- 在科学技术、经济管理中常常要按一定的标准(相似程度或亲疏关系)进行分类。例如,根据生物的某些性状可对生物分类,根据土壤的性质可对土壤分类等。对所研究的事物按一定标准进行分类的数学方法称为聚类分析,它是多元统计“物以类聚”的一种分类方法。由于科学技术、经济管理中的分类界限往往不分明,因此采用模糊聚类方法通常比较符合实际。-In science and technology, economic management, often according to certain criteria (sim
cluster
- 最详细的聚类方法 最详细的聚类方法-The most detailed clustering
MessageClustering
- 用java实现的应用了weka包的Kmeans方法的文本聚类程序。-a program written in java with simplekmeans in weka.jar.
sourcearesult
- 用JAVA实现k-means算法,其中聚类方法使用余弦相似度-Using JAVA k-means algorithm, clustering method using the cosine similarity
K-means
- kmeans算法, K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果-kmeans algorithm, K-means algorithm is the most classic divide-based clustering method is one of the top ten classical data mi
javaSwingweb
- javaSwing实现的web文档聚类方法研究,不同权值与精度,直接输入新闻网址,可以自动解析并聚类web文档-web document clustering method implemented by javaSwing different weights with precision directly enter a news website, you can automatically parse and clustering web documents
CanopyExm
- Canopy聚类算法是一个将对象分组到类的简单、快速、精确地方法。每个对象用多维特征空间里的一个点来表示。这个算法使用一个快速近似距离度量和两个距离阈值 T1>T2来处理。 Canopy聚类算法能快速找出应该选择多少个簇,同时找到簇的中心,这样可以大大优化 K均值聚类算法的效率 。-Canopy is a clustering algorithm to group objects into simple categories, fast, accurate method. Each obj
density-peaks-clustering-master
- 2014年发表的密度峰值聚类方法,聚类 聚类-density peak clustering master
julei
- TFIDF产生文本权重,在用K-means算法进行聚类。方法简单,可供相关人员参考继续深入学习-TFIDF generated text weights in with K-means clustering algorithm. The method is simple, the relevant officers for further study
KMeans
- K-means算法是硬聚类算法,是典型的基于原型的目标函数聚类方法的代表,它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则。-K-means clustering algorithm is hard, is a typical prototype-based clustering method on behalf of the objective function, it is a method of data points to a certain di
CLIQUE
- CLIQUE(Clustering In QUEst)是一种简单的基于网格的聚类方法,用于发现子空间中基于密度的簇。CLIQUE把每个维划分成不重叠的区间,从而把数据对象的整个嵌入空间划分成单元。它使用一个密度阈值识别稠密单元和稀疏单元。一个单元是稠密的,如果映射到它的对象数超过该密度阈值。(CLIQUE (Clustering In QUEst) is a simple grid based clustering method for the discovery of clusters bas