搜索资源列表
KMeansJava
- 利用Java实现的K-均值算法,K-Mean 分群法是一种分割式分群方法,其主要目标是要在大量高纬的资料点中找出 具有代表性的资料点;这些资料点可以称为群中心,代表点;然后再根据这些群中心,进行后续的处理,可用于数据挖掘中的聚类分析-Java implementation using K-means algorithm, K-Mean grouping method is a fragmented grouping method, whose main goal is to a large nu
kmeans
- java k均值源码,实现了k-means的算法,并给出界面显示。实例中通过二维空间中的点进行聚类。-java k-means algorithm, display the cluster result on the two demension.
Kmeans
- K-均值聚类算法,是一种随机选取数个数据中心进行点聚类处理进而生成分类的数据挖掘算法,具有很好的学习功能。-K-means clustering algorithm is a randomly selected number of data center point clustering process thereby generating classification data mining algorithms, with good learning function.
CanopyExm
- Canopy聚类算法是一个将对象分组到类的简单、快速、精确地方法。每个对象用多维特征空间里的一个点来表示。这个算法使用一个快速近似距离度量和两个距离阈值 T1>T2来处理。 Canopy聚类算法能快速找出应该选择多少个簇,同时找到簇的中心,这样可以大大优化 K均值聚类算法的效率 。-Canopy is a clustering algorithm to group objects into simple categories, fast, accurate method. Each obj