搜索资源列表
liuxinggaishu
- :流形学习是一种新的非监督学习方法,近年来引起越来越多机器学习和认知科学工作者的重视. 为了加深 对流形学习的认识和理解,该文由流形学习的拓扑学概念入手,追溯它的发展过程. 在明确流形学习的不同表示方 法后,针对几种主要的流形算法,分析它们各自的优势和不足,然后分别引用Isomap 和LL E 的应用示例. 结果表明, 流形学习较之于传统的线性降维方法,能够有效地发现非线性高维数据的本质维数,利于进行维数约简和数据分 析. 最后对流形学习未来的研究方向做出展望,以期进一步拓展流形
reducing--length-of-vector
- pdf格式 介绍关于高位数据如何降维的方法-reducing length of vector
acmfudaojiaocheng
- 问题规模化是近来信息学竞赛的一个新趋势,它意在通过扩大数据量来增加算法设计和编程实现的难度,这就向信息学竞赛的选手提出了更高层次的要求,本文试图探索一些解决此类问题的普遍性的策略。开始,本文给出了“规模化”一词的定义,并据此将其分为横向扩展和纵向扩展两种类型,分别进行论述。在探讨横向扩展问题的解决时本文是以谋划策略的“降维”思想为主要对象的;而重点讨论的是纵向扩展问题的解决,先提出了两种策略——分解法和精简法,然后结合一个具体例子研究“剪枝”在规模化问题中的应用。问题规模化是信息学竞赛向实际运用
pca
- matlab的主元分析问题。这个程序分三部分,读入图像生成数据,归一化,然后PCA降维。在PCA降维中调用软件自带函数。-pca in matlab
LDA
- LDA线性判别分析算法,用于图像处理中的数据降维方法-LDA linear discriminant analysis algorithm, dimensionality reduction method used for image processing of data
pca
- PCA主成分分析算法,是图像处理的一种数据降维算法-PCA principal component analysis algorithm, is a dimensionality reduction algorithm for image processing of data
PCA_ORL
- 人脸识别技术作为生物体特征识别技术的重要组成部分,在近些年来已经发展成为计算机视觉和模式识别领域的研究热点。本实验是基于K-L变换的主成分分析法(PCA)在人脸识别中的应用,在ORL人脸库的基础上通过Matlab实现了快速PCA算法的验证仿真,并对样本图像进行了重构。本实验在ORL人脸库的基础上,选用每人前5张图片,共计40人200幅样本图像,通过快速PCA算法将10304维的样本特征向量降至20维,并实现了基于主分量的人脸重建,验证了PCA算法在高维数据降维处理与特征提取方面的有效性。-Fac
SPP-master
- 稀疏投影保持降维算法,用于高维度数据降维分类和回归的算法-Projections remain sparse dimension reduction algorithm for high-dimensional data dimensionality reduction classification and regression algorithm
jei_v55
- 用于特征降维,特征融合,相关分析等,基于matlab平台实现,isodata 迭代自组织的数据分析。- For feature reduction, feature fusion, correlation analysis, Based on matlab platform, Isodata iterative self-organizing data analysis.
ywsyx
- 用于建立主成分分析模型,数据模型归一化,模态振动,用于特征降维,特征融合,相关分析等。- Principal component analysis model for establishing, Normalized data model, modal vibration, For feature reduction, feature fusion, correlation analysis.
drtoolbox
- MATLAB数据降维工具箱,花钱买来的,跟大家一起分享,感谢pudn,我们一起加油!(MATLAB Data Dimension Reduction Toolbox)