搜索资源列表
滚动轴承
- 滚动轴承
1
- 基于谱鞘度的包络分析方法在滚动轴承故障特征提取中的应用研究-Application of resonance demodulation in the rolling bearing fault feature extraction based on fast computation of the kurtogram
fault-diagnosis-of-rolling-bearings
- 滚动轴承故障特征的时间_小波能量谱提取方法,机械工程学报-extraction of rolling bearing fault feature based on time-wavelet energy spectrum,journal of mechanical engineering
xiaobo
- 这是一篇关于,基于小波分形和神经网络的滚动轴承故障诊断,的学位论文,希望对大家有帮助-This is an on ball bearing fault diagnosis based on wavelet fractal and neural network, dissertations, and we hope to
Wavelet-transform
- 针对滚动轴承信号的特点,构造脉冲响应小波,采用连续小波变换的方法提取滚动轴承故障信号,提出两种诊断方法。-For Rolling signal characteristics and tectonic pulse response wavelet using continuous wavelet transform to extract the rolling bearing fault signals, and proposed two diagnostic methods.
62
- 对重分配小波尺度谱存在着时、频分辨率不能同时达到最佳及当振动信号中存在着能量较大的噪声时会降低其时频分布可读性的缺陷,提出一种基于参数优化和奇异值分解(SVD)提高重分配尺度谱时频分布可读性的方法。首先利用Shan— non熵方法优化重分配尺度谱基函数的时间.带宽积(TBP),克服其时、频分辨率不能同时达到最佳的缺陷,再对重分配尺度谱 进行SVD降噪降低噪声干扰影响,提高时频分布的可读性。最后用该方法对仿真信号和滚动轴承故障信号进行了分析,结果表明该方法的时频聚集性更好,抗噪能力更强,能
63
- 提出一种基于小波分析和奇异谱降噪理论的新方法, 在分析滚动轴承故障特性的基础上, 将奇异谱理论的降噪方法与小波分析理论结合应用于滚动轴承故障诊断中。实例表明,这种结合后的新方法能够更有效地降低噪声,突出振动信号的故障特性, 从而提高设备故障诊断的准确率。-Proposed based on wavelet analysis and Singular Spectrum Reduction Noise Theory new methods in the analysis of rolling bea
81
- 滚动轴承是各种机电设备中的重要部件,其主要特点是其寿命的随机性较大,且它的好坏直接影响到设备的正常运行。因而掌握轴承运行的工作状态以及故障的形成和发展是目前机械故障诊断领域中研究的重要内容之一。利用轴承的随机振动信号对其工作状态进行诊断是目前最常用的方法-Rolling is a variety of mechanical and electrical equipment is an important component, its main feature is its randomness
83
- 基于循环统计理论, 对循环平稳信号进行处理, 主要研究了信号的二阶循环统计特性, 即循环自相关函数和循环谱密度, 指出循环自相关函数不为零的循环频率对应着信号中的某些故障, 并 可以对调幅信号进行解调. 通过循环频率扫描方法提取的调制源分布在循环频率域的低频段, 其结 果可用循环频率-频率- 循环谱密度的三维图表示. 用仿真信号对该方法进行验证, 并应用于滚动轴承的内、外圈及滚动体的故障诊断, 可以有效地分离出所对应的故障特征频率.-Statistical theory based on
84
- 滚动轴承故障诊断是机械故障检测中一个重要方面。使用小波包分析和包络分析相结合的方法提取轴承微弱振动信号, 克服了传统包络分析方法易丢失信号有效成分的缺点。包络信号的细化谱较好体现了轴承故障信息。-Bearing Fault Diagnosis of mechanical fault detection in an important aspect. The use of wavelet packet analysis and envelope analysis method of combini
87
- 小波分析可同时从时域和频域两个方面对信号进行分析,结合包络分析十分适合滚动轴承的故障特征提取;基于双通道的全矢小波分析方法不仅对单通道小波分析方法具有兼容性,而且弥补了传统的基于单通道信 息进行旋转机械故障特征提取造成的信息量不完整、易导致误诊的弊端。结果表明,在针对滚动轴承外圈故障特征提取时,全矢小波分析方法较小波一包络分析方法具有一定的优势。 -Wavelet analysis simultaneously from the time domain and frequency doma
118
- 滚动轴承振动信号容易受 到随机噪声 的污染, 如 何去噪 成为滚动轴承故障诊断的关键问题之一。而传统的消噪方法可能会将信号中一些能量小的有用信号当作噪声消除, 本 文即提出 一种改进 的小波消噪方法-Rolling bearing vibration signals are easily influenced by the random noise pollution, such as any denoising become one of the key problems of rolling
421
- 针对齿轮滚动轴承等的早期损伤类故障, 提出将小波包分解作为包络分析的前置处理手段以提取振动信号的故障信息特征 。 在简述小波包基本原理的基础上, 通过仿真信号, 对振动信号的具体处理过程进行分析, 并对可能遇到的问题, 提出处理办法, 然后应用于诊断实例 。 -Early damage fault for rolling bearings and other gear, the proposed wavelet packet decomposition as pre-processing mea
435
- 滚动轴承多部位多类别故障诊断属于大规模或者较复杂分类问题,利用智能方法诊断时需 要设计结构合理的神经网络才能实现高精度诊断 -Rolling multi-site multi-class fault diagnosis are more complex or large-scale classification problems, the need for the rational design of neural network structure in order to achieve
Study-on-compound-fault-diagnosis
- 针对滚动轴承复合故障信号特征难以分离的问题, 提出将双树复小波变换和独立分量分析( ICA) 结合的故障诊断方 法 该方法首先将非平稳的故障信号通过双树复小波变换分解为若干不同频带的分量 由于各个分量存在一定的频率混叠, 对 故障信号特征提取有很大的干扰, 进而引入 ICA 对各个分量所组成的混合信号进行盲源分离, 从而尽可能消除频率混叠 最后 对从混合信号中分离出来的独立分量信号进行希尔伯特包络解调, 即可实现对复合故障特征信息的分离和故障识别-Aiming at the diff
282
- 利用软件对滚动轴承使役过程进行了动态有限元计算输入变量抽样空间的位置进行一系列确定性拟合试验-Using software to process the location of Rolling causative dynamic finite element input variable sampling space to fit a series of deterministic test
Size-calculation-for-rolling-bearing
- 根据转速,节圆直径,滚动体直径,采样率进行滚动轴承故障尺寸的计算-Size calculation for rolling bearing
1
- 滚动轴承故障诊断的阶比多尺度形态学解调方法_徐亚军-Order Bearing Fault Diagnosis than multiscale morphology demodulation method _ XU Ya-jun
基于VMD和Teager能量谱的滚动轴承故障特征提取
- 基于VMD和1_5维Teager能量谱的滚动轴承故障特征提取_向玲(To extract _ Ling fault features of rolling bearing VMD and 1_5 dimension Teager based on energy spectrum)
温度变化对滚动轴承游隙的影响.doc
- 温度变化对滚动轴承游隙的影响.doc