搜索资源列表
vq
- 说话人识别是语音识别的一种特殊方式,其目的不是识别语音内容,而是识别说话人是谁,即从语音信号中提取个人特征。采用矢量量化(VQ)可避免困难的语音分段问题和时间归整问题,且作为一种数据压缩手段可大大减少系统所需的数据存储量。本文提出了识别特征选取采用复倒谱特征参数和对应用VQ的说话人识别系统改进的一种方法。当用于训练的数据量较小时,复倒谱特征可以得到比较稳定的识别性能。VQ的改进方法避免了说话人识别系统的训练时间与使用时间相差过长从而导致系统的性能明显下降以及若利用自相关函数带来的大量运算。-Sp
adapterSystemPaper
- 论文标题:自适应模糊系统在手写体数字识别中的应用研究 作者:张镭 作者专业:计算机软件人工智能 导师姓名:黄战 授予学位:硕士 授予单位:暨南大学 授予学位时间:19990501 论文页数:59页 文摘语种:中文文摘 分类号:TP18 TP391.4 关键词:手写体数字 自适应 模糊逻辑 神经网络 模式识别 摘要:该文针对模式识别的特点,构造了适合于模式识别问题的自适应模糊系统,对三种不同学习算法加以改进,在手写全数字识别上对分类器进行了实现,
FaceDetection
- 一个典型的人脸识别系统主要包括训练过程和识别过程。训练过程主要完成将已知人脸进行定位、特征提取与选择、以及分类器的设计;识别过程则完成将未知图片进行处理,并最终识别出身份的分类和决策
speechsignalprocessingincar
- 汽车中的话音拨号系统是自动语音识别技术的应用热点. 自动语音识别系统是一个 基于训练的系统. 在汽车噪声中, 由于实际应用环境与形成系统参数的训练环境的失配, 传统 语音识别系统的性能会大幅度地下降, 从而无法实用. 为了提高语音识别系统在特定环境下的 识别率及实用性, 首先根据汽车环境中语音的失真模型分析了系统性能下降的原因, 然后针对 加性汽车噪声与信道失真对系统的影响, 讨论了在汽车噪声中改善语音识别系统性能的方法. 提出了在识别系统中用基于子带的语音增强算法和倒谱均值
application_of_special_person_on_ASR_for_the_contr
- 常用的说话人识别方法有模板匹配法、统计建模法、联接主义法(即人工神经网络实现)。考虑到数据量、实时性以及识别率的问题,采用基于矢量量化和隐马尔可夫模型(HMM)相结合的方法。 说话人识别的系统主要由语音特征矢量提取单元(前端处理)、训练单元、识别单元和后处理单元组成,
模式识别
- 根据描绘子算法,选取能够表征和保持两个图之间基本差异的最少的描绘子的数量,并对其每一个特征矢量的分量中加入均值为0标准差为每个矢量中最大分量值的1/10的高斯噪声,创建两个模式类;对两类各生成100个样本作为训练集,另外在各生成100个样本作为测试集。
几种语音识别算法的比较
- 几种小训练样品集的数字语音识别模型的比较性研究
CHMM
- 使用层叠隐马模型解决命名实体识别问题,含有训练语料及测试预料。-Implicit use of cascading Ma Named Entity Recognition Model to solve the problem, containing training materials and tests are expected words.
paper2
- 语音识别技术主要包括特征提取技术、模式匹配准则及模型训练技术三个方面。此外,还涉及到语音识别单元的选取。选择识别单元是语音识别研究的第一步。语音识别单元有单词(句)、音节和音素三种,具体选择哪一种,由具体的研究任务决定。-Speech recognition technology, including feature extraction techniques, pattern-matching criteria and the three aspects of model training t
052520
- 提出了一种用于矢量量化的改进的聚类算法,该算法在MKM(Modified K-Means)算法的框架的基础上,对初始码本的生成、失真测度的选择、*型胞腔的处理等方面进行了改进,从而减少了原算法在能量和增益上对聚类结果的影响.并将该算法应用于波形编辑孤立字识别器,这种识别器直接对语音样本的时域波形进行训练和聚类,不需要提取语音参数,算法复杂度较低,加上提出的聚类算法失真测度简单易实现,对芯片的运算能力要求不高,非常适用于有低成本要求的语音识别器场合.通过中文元音字识别的实验证明,在相同码本尺寸下
safjfd
- 首先分析了典型说话人识别系统的各关键技术,详细分析了矢量量化技术在 说话人识别中的应用,研究了码本训练算法以及说话人判别算法,对算法中各参 数值的选取进行了讨论 其次根据系统的需求建立一个小的语音库,录制语音信 号,并对采集的语音信号进行预处理,检测语音信号的起始端点 在MATLAB 环境下仿真说话人识别系统,验证系统设计方案的可行性:特征提取阶段,提取 语音信号的12阶美尔倒谱系数以及各阶倒谱系数对应的1阶差分倒谱系数,在 训练阶段,采用分裂法和GLA算法相结合的矢量量
jingeiARTYU
- 本资料的功能为:运用数学统计方法和时间序列分析方法对原始振动信号进行分析,获取相应的时域,频域,频域及时间序列模型参数并以此作为特征参数,然后运用距离区分技术进行评估,选取敏感的特征参数作为ART-similarity分类器的输入并进行训练,最后便可识别出设备的性能状态。 基于YU范数对承不同预紧状态的分析,针对进给系统所采集的数据样本事先不知其对应的状态时,则可利用基于YU范数的ART-Similarity监督分类器对其进行诊断分析。针对基于Yu范数ART-Similarity的算法
5
- 在电话语音识别中需要识别电话号码,这需要识别0到9十个数字,而识别前首先需要训练这十个数字,请编写程序设计一个电话号码表,要求数字组数最少。其中:每一组数字都是八位(例如:62781707),0到9十个数字中每两个数字之间至少连接一次(象62781707,其中出现了:6-2、2-7、7-8、8-1、1-7、7-0、0-7七个连接,7-0和0-7是不同的连接),0-0、1-1、......、9-9的连接也要考虑。每个数字在开头、结尾至少各出现一次(象62781707,其中6在开头出现一次,7在结尾
mf
- 支持向量机 支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力-Support vector machine Support vector machine is Jianli statistical learning theory of VC dimension theory and structural risk minim
SVM
- 本书介绍的支持向量机方法,是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力 。-This book introduces the support vector machine method is based on statistical learning theory, VC dimension and structural risk mi
TCS230-Color-Sensor-for-Ship
- 该系统采用三块TCS230颜色传感器,监测轮船经过后海水的颜色变化的情况,数据采用就地处理,并运用改进型BP神经网络算法进行污染模式训练和模式识别。通过nRF401无线数字收发器,把污染识别的结果发送回监 视器,再通过字符和语音对识别结果进行报告。把轮船污染数据采集器安装在轮船尾部两侧进行实时监测,结果表明,监测速快,精确度高。-The system uses three TCS230 color sensor to monitor the ship through the water
Data-Classification-and-Recognition
- 提出一种基于模糊C 均值的支持向量机分类算法,通过模糊C 均值算法对未知类别数据 进行划分,然后再利用支持向量行对划分后的数据机进训练。解决了以往人们应用支持向量机进行 数据分类识别前必须采用已知类别的数据对支持向量机进行训练的弊端,提高了数据分类的效率。-Support vector machines classification algorithm is proposed based on Fuzzy C-Means, Fuzzy C-Means algorithm unknown
MATLAB
- 分类识别,可以选择很多方法,一般步骤:找特征点,训练,比对,找出方法 或者你的那种更容易,可以根据灰度值不同来查找具体位置-Classification, can choose to many methods and general steps: feature points, find training, comparison, find a way Or the kind of easier, you can according to different gray values to
PCA
- 针对稀疏表示识别方法需要大量样本训练过完备字典且特征冗余度较高的问题,提出了结合过完备字典学习与PCA降维的小样本语音情感识别算法.该方法首先用PCA降维方法将特征降维,再将处理后的特征用于过完备字典训练与稀疏表示识别方法,从而给出了语音情感特征的稀疏表示方法,并确定了新算法的具体步骤.为验证其有效性,在同等特征维数下,将方法与BP, SVM进行比较,并对比、分析语音情感特征稀疏化前后对语音情感识别率、时间效率以及空间效率的影响.试验结果表明,所提出方法的识别率比SVM与BP高 与采用稀疏化前的
基于文本内容的垃圾短信识别
- 具体描述了怎么通过分词过滤,绘制词云,模型训练等进一步通过该案例学习机器学习的有关内容