搜索资源列表
117
- 针对非线性非平稳信号的去噪问题,提出一种基于主成分分析(PCA)的经验模态分解(EMD)消噪方法.该方法根据EMD的分解特性,利用PCA对噪声信号经EMD分解后的内蕴模态函数(IMF)进行去噪处理-For nonlinear and non-stationary signal de-noising is proposed based on principal component analysis (PCA) of the empirical mode decomposition (EMD) de
EMD-Based-Denoising-
- 其中一个为这经验模式分解的任务(EMD)是潜在有用的非参数信号去噪 为此小波阈值一直占主导地位的技术的区域多年。-One of the empirical mode decomposition of this task (EMD) is potentially useful non-parametric signal wavelet threshold de-noising for many years to this end has been the dominant technology i
emd
- 利用EMD和小波信号去噪的参考文献,适合初学者学习!-The use of EMD and wavelet signal de-noising references, suitable for beginners to learn!
EMD
- 要求同学在学习EMD基本理论的基础上,对一维信号进行各种降噪方法的研究,实现信号去噪。 -EMD based learning requires students in the basic theory of one-dimensional signal noise study various methods to achieve signal de-noising.