搜索资源列表
Visitor
- 设计模式——访问者模式 Visitor模式允许我们在不改动原有结构的基础之上不断增加新的功能。 ICumulation接口定义了方法Cumulate(),旨在计算1+2+……+n,有两种不同的实现方法,一个是一般的叠加算法GeneralArithmetic,一个是高斯算法GaoSiArithmetic。 因为某种原因,系统需要添加求平均值的功能,还有计算1到n的平方和。 按照一般的思路,我们需要在ICumulation中定义两个方法分别计算平均值和平方和,并在实现类中同
blindimagerecover
- 提出一种新的算法:逆主元法,利用高斯点扩展函数的特性,在径向基神经网络的模型下,对图像进行盲目复原。-a new algorithm : inverse main element method using Gaussian point spread function of the characteristics the RBF neural network model, the image blind rehabilitation.
watermarkt1
- 基于小波零树特性的视觉感知度模型的优化方案, 给出了两种水印算法: 一种算法嵌入的是高斯序列水印, 通过相关检测实现盲检测 另一种算法嵌入的是二值图像水印, 水印的提取是非盲提取。这两种算法在所有重要小波系数( 包括最低频系数) 中嵌入水印, 以达到最大化水印嵌入量的目的, 并结合感知度模型在水印的透明性和鲁棒性之间实现了较好的平衡, 对于常见的图像处理操作, 特别是对于JPEG 和小波压缩均有较好的鲁棒性。-based on wavelet zerotree visual perception
人脸检测与语音驱动口型的文章
- 这是一篇详细介绍人脸检测与语音驱动口型的文章,其中使用了高斯混合模型采取了无监督聚类的方法,希望对你有用。,This is a detailed introduction Face Detection and voice-driven I-type article, which uses the Gaussian mixture model taken unsupervised clustering method, in the hope that useful to you.
GMM
- Source code - create Gaussian Mixture Model in following steps: 1, K-means 2, Expectation-Maxximization 3, GMM Notice: All datapoints are generated randomly and you can config in Config.h-Source code- create Gaussian Mixture Model
OnTrackingofMovingObjects
- 学位论文;运动物体跟踪方法主要包括卡尔曼滤波,Mean-shift,Camshifi算法,粒子滤波器,Snake模型等;应用卡尔曼滤波方法设计了一套煤矿矿工出入自动监测系统;提出了一种新的基于高斯混合模型的颜色特征提取方法,该方法克服了现有的Camshift算法Continuousl y Adaptive eanshift中跟踪目标特征提取精确度低和计算复杂度高的缺陷-Dissertation moving object tracking methods include Kalman filt
gao
- 主要介绍了基于(单、多)高斯统计模型的背景获取法-Mainly based on the (single, multi-) Gaussian statistical model to obtain the background of law
High
- This paper presents a clustering approach which estimates the specific subspace and the intrinsic dimension of each class. Our approach adapts the Gaussian mixture model framework to high-dimensional data and estimates the parameters which best
111
- 基于混合高斯背景建模和阴影抑制算法, 可以消除混合背景下的阴影-mixture gaussian model(GMM)
extended_reciever
- Bit Error Rate analysis of an Extended Receiver for Rectangular PAM. The performance of a digital communication system in the presence of additive white Gaussian noise (AWGN) can be assessed by the measurement of the bit error rate (BER). The Si
gmsk
- :为了论证高斯最小频移键控(GMSK)信号在时域和频域的相互关系,分析了GMSK信 号调制原理和滤波器传递函数,建立了GMSK调制和解调模型。-: In order to demonstrate Gaussian Minimum Shift Keying (GMSK) signal in time domain and frequency domain, the relationship between the analysis of GMSK signal modulation princ
rennian
- 一种基于肤色分割、区域分析和模板分布的彩色图像人脸检测算法.首先对输入的彩色图像利用混合高斯模型和亮度模型进行分割,然后根据人脸五官的结构特征对得到的区域进一步分析处理,获得所有可能的候选人脸.接着构造了一种基于双眼和人脸模板的概率模型并利用其对候选人脸进行最终检测.-Based on skin color segmentation, regional analysis and the template in color images of face detection algorithm. F
dsgdg
- 该部分内容为高斯建模的文档合集,全部都是PDF格式的文档,描述了高斯建模的过程和一些改进的算法。有需要的可以下载。-The part of the document collection for the Gaussian model are all PDF format documents, describes the process of Gaussian model and some improved algorithms. Need can be downloaded.
Investigation_on_Model_Selection_Criteria_for_Spe
- Speaker recognition is the task of validating individual s identity using invariant features extracted from their voices print. Speaker recognition technology common applications include authentication, surveillance and forensic applications. This Pa
Algorithm-collections-for-digital-signal---E.-S.-
- SUMMARY: The Algorithms such as SVD, Eigen decomposition, Gaussian Mixture Model, HMM etc. are scattered in different fields. There is the need to collect all such algorithms for quick reference. Also there is the need to view such algorithms in ap
stauffer-mog-
- stauffer的经典的混合高斯模型算法描述,适合做行为检测的人使用。-stauffer the classical Gaussian mixture model algorithm descr iption, suitable for people who use behavior detection.
The-simulation-of-OFDM-systems
- 正交频分复用(OFDM) 是第四代移动通信的核心技术。该文首先简要介绍了OFDM基本原理,重点研究了理想同步情 况下,保护时隙(CP) 和不同的信道估计方法在高斯信道和多径瑞利衰落信道下对OFDM系统性能的影响。在给出OFDM系 统模型的基础上,用MATLAB语言实现了整个系统的计算机仿真并给出参考设计程序。最后给出在不同的信道条件下,保 护时隙、信道估计方法对OFDM系统误码率影响的比较曲线,得出了较理想的结论。-Orthogonal frequency division mult
IEEE_TPAMI_2002
- 描述怎样实现自适应选择高斯模型个数及求解过程-Describes how to implement adaptive Gaussian model number and select the solution process
Laplacian-Gaussian-Model
- 文章介绍了一种基于拉普拉斯——高斯模型的语音端点检测算法!-This paper introduces a Laplace-based- voice endpoint detection algorithm Gaussian model!
Video-classification-
- 本文档包含了对视频分类的方法论文,先提取视频中音频信息和图像信息,然后进行拼接并使用PCA进行降维处理,最后使用高斯联合模型进行学习和分类-This document contains papers on the video classification method, first extract the video audio information and image information, and then stitching using PCA dimension reduction,