搜索资源列表
Adaptive-background-mixture-models-
- 在目标检测中有关高斯背景建模方法的实现和国际上先进方法的介绍-Adaptive background mixture models for real-time tracking(高斯背景建模方法)
OnTrackingofMovingObjects
- 学位论文;运动物体跟踪方法主要包括卡尔曼滤波,Mean-shift,Camshifi算法,粒子滤波器,Snake模型等;应用卡尔曼滤波方法设计了一套煤矿矿工出入自动监测系统;提出了一种新的基于高斯混合模型的颜色特征提取方法,该方法克服了现有的Camshift算法Continuousl y Adaptive eanshift中跟踪目标特征提取精确度低和计算复杂度高的缺陷-Dissertation moving object tracking methods include Kalman filt
An-improved--background-model-
- 在移动目标检测中的,在高斯背景建模的基础上滤除阴影OpenCV-An improved adaptive background mixture model for real-time tracking with shadow detection(在高斯背景建模的基础上滤除阴影OpenCV
GMPHD
- 针对扩展目标的高斯混合PHD滤波算法的论文-presents a Gaussian-mixture implementation of the PHD filter for tracking extended targets
A-Bayesian-estimation-for-single-target-tracking-
- A bayesian estimation for single target tracking based on state mixture models
19_04
- Adaptive background mixture models for real-time tracking