搜索资源列表
Desktop
- 人脸识别技术是计算机模式识别领域非常活跃的研究课题,在法律、商业等领域有 着广泛的应用前景。自动人脸识别系统一般由两个模块组成:定位与检测模块,特征提 取与识别模块。本文对两个子模块进行了详细讨论,通过实验仿真了一个基于静态图像 的人脸识别系统。为提高系统的识别率,本文对定位检测模块和特征提取模块进行了深 入研究。 针对复杂多变人脸检测和定位问题,实现了一种基于对称特征的人脸定位方法。该 算法首先基于肽色特征提取出人脸区域,根据眼睛的颜色和梯度特征在肤色区找到眼睛 可
Grading-test
- 为实现合格和缺陷板栗的分级, 研究了 1 种基于 BP 神经网络与板栗图像特征的板栗分级方法。 试验以罗田板 栗为研究对象, 提取的颜色及纹理等 8 个特征值, 通过主成分分析提取相应的主成分得分向量构成模式识别的输入。 利 用 BP 神经网络方法建立了板栗分级模型。 试验结果表明, 在图像信息主成分因子数为 3, 中间层节点数为 12 时, 建立 的模型最佳, 模型训练时的回判率为 100 , 预测时识别率达到了 91 .67 。 研究结果表明基于机器视觉技术的针对缺陷 板栗分
PCA_ORL
- 人脸识别技术作为生物体特征识别技术的重要组成部分,在近些年来已经发展成为计算机视觉和模式识别领域的研究热点。本实验是基于K-L变换的主成分分析法(PCA)在人脸识别中的应用,在ORL人脸库的基础上通过Matlab实现了快速PCA算法的验证仿真,并对样本图像进行了重构。本实验在ORL人脸库的基础上,选用每人前5张图片,共计40人200幅样本图像,通过快速PCA算法将10304维的样本特征向量降至20维,并实现了基于主分量的人脸重建,验证了PCA算法在高维数据降维处理与特征提取方面的有效性。-Fac
5207
- 最小均方误差(MMSE)的算法,Gabor小波变换与PCA的人脸识别代码,模式识别中的bayes判别分析算法。- Minimum mean square error (MMSE) algorithm, Gabor wavelet transform and PCA face recognition code, Pattern Recognition bayes discriminant analysis algorithm.