搜索资源列表
OlshausenField1997.是过完备基的稀疏编码算法
- 是过完备基的稀疏编码算法,对于过完备基有很大帮助。,Is over-complete dictionary based sparse coding algorithm, for over-complete base of much help.
5
- 是一篇关于多层次稀疏编码网络的学习,欢迎大家下载。-Is a multi-layer sparse coding on the network to learn, are welcome to download.
Sparse-Coding-by-Elad
- Elad写的关于稀疏理论的书,内容丰富,适合初学稀疏理论的同学,不容错过额-a book about sparse representation of signal and its practice
CVPR-ScSPM
- Linear Spatial Pyramid Matching Using Sparse Coding for Image Classification
multi-dictionary-learning
- 燕京大学硕士论文,关于稀疏编码,涉及到多层字典学习算法,很优秀的论文-Yenching University Master' s thesis on sparse coding, involving multi-dictionary learning algorithm, very good papers
LZSR4345556-
- yangjianchao将稀疏编码引入到超分辨率重建的文章-Yangjianchao will be introduced to the sparse coding super-resolution reconstruction
Introduction-Compressed-Sensing
- 压缩感知(CS)理论是在已知信号具有稀疏性或可压缩性的条件下,对信号数据进行采集、 编解码的新理论。主要阐述了CS理论框架以及信号稀疏表示、CS编解码模型,并举例说明基于压缩感知理论的编解码理论在一维信号、二维图像处理上的应用。 -Compressed Sensing(CS) theory is a novel data collection and coding theory under the condition that signal is sparse or compress
Compressed-Sensing-Theory
- 用压缩感知理论对信号数据进行采集、编解码,进行数据恢复。主要阐述了CS理论框架以及信号稀疏表示、CS编解码模型.-Compressed Sensing(CS) theory is a novel data collection and coding theory under the condition that signal is sparse or compressible.
larc-of-speech-enhancement
- 基于字典的语音增强中稀疏编码计算稀疏矩阵的一种改进算法,称作larc-Dictionary-based computing sparse coding speech enhancement sparse matrix, an improved algorithm, called larc
KSVD-of-speech-enhancemant
- 基于字典学习的语音增强中字典更新的算法,称作近似K-SVD算法,其中包含了OMP算法用于稀疏编码计算系数矩阵-Dictionary-based learning dictionary speech enhancement algorithm update, called approximate K-SVD algorithm, which contains the sparse coding algorithm is used to calculate the coefficient matri
P1_1-s2.0-S016786551400316X-main
- An Adaptive Bimodal Recognition Framework using Sparse Coding for Face and Ear
icml09-deepbeliefnetwork
- 相比DeconvNet写得比较简洁易懂。但是原来代码里面给的数据似乎没法跑。所幸同作者还有一些代码用到了TCNN,比如action recognition,可以一起下载下来参考。这个代码主要特色就是tiled结构,可以用来参考,然后把里面ICA的优化函数换成RICA,Sparse Coding等等。总之,在这个代码里也了解了不少(比如line search等)。-DeconvNet well written and easy to understand compared to relativel
EE3
- 关于空间预编码的文章:Spatially Sparse Precoding in Millimeter Wave MIMO Systems。对研究空间预编码的研究者有用。-About spatially precoded article: Spatially Sparse Precoding in Millimeter Wave MIMO Systems. Useful for research on space pre-coding researchers.