搜索资源列表
-
0下载:
说话人识别是语音识别的一种特殊方式,其目的不是识别语音内容,而是识别说话人是谁,即从语音信号中提取个人特征。采用矢量量化(VQ)可避免困难的语音分段问题和时间归整问题,且作为一种数据压缩手段可大大减少系统所需的数据存储量。本文提出了识别特征选取采用复倒谱特征参数和对应用VQ的说话人识别系统改进的一种方法。当用于训练的数据量较小时,复倒谱特征可以得到比较稳定的识别性能。VQ的改进方法避免了说话人识别系统的训练时间与使用时间相差过长从而导致系统的性能明显下降以及若利用自相关函数带来的大量运算。-Sp
-
-
0下载:
SPEAKER IDENTIFICATION:
A DEMONSTRATION USING MATLAB
-
-
0下载:
speaker identification ppt
-
-
0下载:
Wavelet-Based Mel-Frequency CepstralCoefficients for Speaker Identification using
Hidden Markov Models
-
-
0下载:
GMM/ANN混合说话人辨认模型 基于MATLAB平台的系统设计-GMM/ANN hybrid model speaker identification system design based on MATLAB
-
-
0下载:
基于MATLAB 平台下GMM建模的说话人识别运算和研究,-GMM touch speaker identification based on MATLAB computing and research, the main research
-
-
0下载:
Combining classifier decisions for robust speaker identification
-
-
0下载:
complete annotation of the AVICAR corpus. Also, the corpora will
be used for audio-visual speech recognition, speech detection, speaker identification and other future
research.
-
-
0下载:
Electronic industry now growing towards the automation of everything, It includes development of Touch screen Interface Voice Recognition etc. These are leads to a world in which almost all electronic systems are capable of working in response with h
-
-
0下载:
基于鲁棒听觉特征的说话人识别,值得借鉴!-Speaker identification based on robust auditory features
-
-
0下载:
speaker identification, biometric
-
-
0下载:
Speech processing applications such as speech enhancement and speaker identification rely on the estimation of relevant parameters from the speech signal. These
parameters must often be estimated from noisy observations since speech signals are
r
-
-
0下载:
FEATURE EXTRACTION USING MFCC:Mel Frequency Ceptral Coefficient is a very common and efficient technique for signal processing. This
paper presents a new purpose of working with MFCC by using it for Hand gesture recognition. The
objective of usin
-
-
0下载:
Modulation Spectral Features for Robust Far-Field Speaker Identification
-
-
0下载:
speaker identification by genetic algorithm
-
-
0下载:
Investigation of the relation between amount of VoIP speech data and performance in speaker identification task over VoIP Networks
-