搜索资源列表
support-vector-machine-
- 利用谱聚类方法在特 征向量空间中对原始样本数据进行重新表述使得在新表述中同一聚类中的样本能够更好地积聚在一起构建聚类核函数 并进而构造聚类核半监督支持向量机 使样本更好地满足半监督学习必须遵循的聚类假设 -Restated in the new formulation in the same cluster sample be better able to accumulate together to build the clustering of nuclear function and
support-vector-machine-
- 提出了一种支持矢量机的汉语声调识别新方法。论文首先在基频和对数能量的基础上,建立了一个适合于支 持矢量机分类的等维声调特征。然后对支持矢量机的多分类策略和不同核函数对声调识别的影响进行了实验研究。 与BP神经网络相比,支持矢量机具有更高的识别率和更强的推广能力。-This paper presents a novel support vector machine based Chinese tone recognition method.A new tone recognition
zuiyouhuashiyan
- 利用matlab编程求解线性规划问题,同时对线性支持向量机(LSVM)有一些初步的了解-Matlab programming for solving linear programming problems, and some preliminary understanding of linear support vector machine (LSVM)
2011_7_1_49_56
- support vector regression has been proposed in a number of image processing tasks including blind image deconvolution, image denoising and single frame super-resolution. As for other machine learning methods, the training is slow. In this paper,
Custom-Evaluation
- 提出一种基于粗糙集与支持向量机的客户动态评估方法。根据客户群特点从当前价值、潜在价值和附加价值三个维度分析并构建客户评估指标,利用指标的年增幅率监测客户价值的变化规律。应用粗糙集布尔推理算法、粒子群算法实现连续属性离散化和知识约简。通过10-重交叉验证和网格搜索技术获取最优惩罚因子与核参数,缩放样本数据集并完成支持向量机一对一分类器的训练与测试。结果表明该评估方法能够实现周期性的客户价值评估与细分,具有很强的泛化能力。- A customer dynamic evaluation method
zhichixiangliangji
- 关于支持向量机算法的原理和应用,适于大量数据的处理,简单方便-On support vector machine algorithm theory and applications, suitable for mass data processing, simple and convenient
Wind-speed-prediction
- 基于最小二乘支持向量机理论,结合某风电场实测风速数据,建立了最小二乘支持向量机风速预测模型。对该风电场的风速进行了提前1h的预测,其预测的平均绝对百分比误差仅为8.55 ,预测效果比较理想。同时将文中的风速预测模型与神经网络理论、支持向量机(support vector machine,SVM)理论建立的风速预测模型进行了比较。仿真结果表明,文中所提模型在预测精度和运算速度上皆优于其他模型。 -Based on least squares support vector machine the
radial
- support vector Machine