搜索资源列表
P
- 随着信息技术的发展,以电子形式存在的文本信息已经成为人们主要的信息来 源。人们迫切需要能够从Web上快速、有效地发现资源和知识的工具。近年来针 对文本数据的文本挖掘已逐渐成为人们研究的新课题。其中,对于文本聚类的研 究己经引起了广泛的重视,并取得了良好的成果。 本文首先对数据挖掘流程以及数据挖掘分类和各自的研究现状及发展进行了 概括的介绍;然后结合汉语自身的相关特点详细的分析了中文文本自动聚类中所 涉及到的关键问题及其技术;接着介绍了人工神经网络技术的发展的现状和特点
classificiation-algorithm-overview
- 机器学习领域经典分类算法综述,包括Decision Tree(ID3、C4.5(C5.0)、CART、PUBLIC、SLIQ和SPRINT算法),三种典型贝叶斯分类器(朴素贝叶斯算法、TAN算法、贝叶斯网络分类器),k-近邻 、 基于数据库技术的分类算法( MIND算法、GAC-RDB算法),基于关联规则(CBA:Classification Based on Association Rule)的分类(Apriori算法),支持向量机分类,基于软计算的分类方法(粗糙集(rough set)、遗传
An-Empirical-Bayesian-Framework
- 一种基于贝叶斯框架的线性分类。使用神经生理学信息和实验信息构建协方差矩阵。-A linear classification based on Bayesian framework. Covariance matrix is constructed using information and experimental neurophysiology information.