搜索资源列表
Kalman
- Kalman Filter. Includes demo for 2D tracking.
signal-parameter-estimation
- 本文分析了多级维纳滤波器的特性,在加性噪声和二维天线阵列如均匀圆阵、均匀面阵、十字阵等条件和背景下,对信源个数和信源参数估计问题进行了研究,提出了基于多级维纳滤波器前向分解特性的快速参数估计方法,同时提出了基于多级维纳滤波器的二维ESPRIT参数估计方法,该类方法无需协方差矩阵的估计运算及分解运算,计算复杂度较低。另外,还提出了对信源个数的估计算法。-This paper analyzes the characteristics of multistage Wiener filter, in t
fast-subspace-algorithm
- 为了对空间辐射源进行精确定位" 建立了基于任意阵列对多目标源进行二维DOA估计的数学模型。将 MUSIC算法推广到三维空间阵列可以对辐射源进行二维高精度测向,但由于其需要估计接收数据的协方差矩阵和进行特征分解, 因而其计算量较大。利用多级维纳滤波器的前向递推获得信号子空间和噪声子空间,不需要估计协方差矩阵和对其进行特征分解,从而降低了MUSIC算法的计算量。将文中的方法应用于任意阵列的二维DOA估计中进行计算机仿真和实际侧向系统性能验证,实验结果均表明该方法达到了MUSIC算法的性能,但与常规M