搜索资源列表
A-global-reconstruction-model
- 已有的基于分块压缩感知的图像重构模型采用相同的测量矩阵以块 ×块的方式获取数据,解决了传统CS方法中测量矩阵所需存储量较大的问题,但由于采用分块重构,没有考虑 到图像的全局稀疏度,出现了大量的块效应。-Current image reconstruction models using block compressed sensing
Image-reconstruction_CS
- 合稀疏贝叶斯学习(SBL)和可压缩传感理论(CS),给出一种在噪声测量条件下重建可压缩图像的方法。该方法将cS理论中图像重建过程看作一个线性回归问题,而待重建的图像是该回归模型巾的未知权值参数;利用sBL方法对权值赋予确定的先验条件概率分布用以限制模型的复杂度,并引入超参数- Hop sparse Bayesian learning ( SBL ) and compressible sensing theory ( CS ) , give a compressible image recon