搜索资源列表
基于支持向量机的手写数字识别(小论文+matlab编程及结果)
- 支持向量机的研究现已成为机器学习领域中的研究热点,其理论基础是Vapnik[3]等提出的统计学习理论。统计学习理论采用结构风险最小化准则,在最小化样本点误差的同时,缩小模型泛化误差的上界,即最小化模型的结构风险,从而提高了模型的泛化能力,这一优点在小样本学习中更为突出。SVM理论正是在这一基础上发展而来的,经过十几年的研究和发展,已开始逐步应用于一些领域。在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势,已经在模式识别、函数逼近和概率密度估计等方面取得了良好的效果。
deboor-cox.rar
- 目的:运用强化学习!多分类器集成!降维方法等最新计算机技术,结合细胞病理知识,设计制作/智能化肺癌细胞病理图像诊断系统0"方法:采集细胞图像,运用基于强化学习的图像分割法将细胞区域从背景中分离出来 运用基于样条和改进2方法对重叠细胞进行分离和重构 提取40个细胞特征用于贝叶斯!支持向量机!紧邻和决策树4种分类器,集成产生肺癌细胞分类结果 建立肺癌细胞病理图库,运用基于等降维方法对细胞进行比对,给予未定型癌细胞分类"结果:/智能化肺癌细胞病理诊断系统0应用于临床随机1200例肺
RVM_matlabToolBox
- 相关向量机(RVM)的matlab源程序,包含快速算法,内含代码使用说明。 RVM采取是与支持向量机相同的函数形式稀疏概率模型,对未知函数进行预测或分类。 优点: (1) 不仅仅输出预测目标量的点估计值,还可以输出预测值的分布. (2) 使用更少数量的支持向量,从而显著减少输出目标量预测值的计算时间. (3) RVM不需要估计过多的参数. (4) RVM对是否满足Mercer 定理的核函数没有限制,适应性更好. -Relevance Vector Ma
SVM_lzb1p0
- 支持向量机matlab程序 (1) Main_SVC_C.m --- C_SVC二类分类算法 (2) Main_SVC_Nu.m --- Nu_SVC二类分类算法 (3) Main_SVM_One_Class.m --- One-Class支持向量机 (4) Main_SVR_Epsilon.m --- Epsilon_SVR回归算法 (5) Main_SVR_Nu.m --- Nu_SVR回归算法-Support vector machine matlab procedur
gyy
- 从因子分析的角度出发解决基因表达谱分析问题。为解决独立成分分析方法在求解过程中的不稳定性,提出一种基于选择性独立成分分析的DNA微阵列数据集成分类器。首先对基因表达水平的重构误差进行分析,选择部分重构误差较小的独立成分进行样本重构,然后基于重构后的样本同时训练多个支持向量机基分类器,最后选择部分分类正确率较高的基分类器进行最大投票以得到最终结果。在3个常用测试集上验证了本文设计方法的有效性。-This paper tries to deal with gene expression proble
libsvm-mat-2.89-3
- 支持向量机matlab程序,版本libsvm-2.89,包括接口文件-Matlab program of support vector machine
Test Class By SVM
- 支持向量机实现的文本分类程序,过程如下,首先使用分词工具分词,这里使用的是计算所的分词工具,从而保证分词是最优秀的,接下来使用国际效率最高的文本IFIDF向量生成工具生成文本相量,最后使用台湾林智恒的效率最高的SVM实现软件包libsvm实现训练和分类,可以这么说,该文本分类是同类中效率最高最准确的-text classfication source code use 3 technology.words sementation,vector gerneration,and libsvm too
20080111
- 有关图像的目标识别:"给出一种基于特征分类辨识的合成孔径雷达图像目标检测方法#用恒虚警和扩展分形方法对3&E图像进行目 标检测后用面积和峰值能量比算子辨识目标和背景杂波!去除一部分虚警!用小波域主成分分析对每个检测窗口内的图 像提取特征向量!用支持向量机对提取得到的特征向量进行分类!辨识目标和背景杂波!完成目标检测#使用&K?3数 据对该方法进行验证和分析!实验结果表明!经过特征分类辨识后!在检测率不变的情况下!虚警数目显著降低# -Related to the image ta
Character-Recognition(Lib-SVM)
- 支持向量机的研究现已成为机器学习领域中的研究热点,其理论基础是Vapnik[3]等提出的统计学习理论。统计学习理论采用结构风险最小化准则,在最小化样本点误差的同时,缩小模型泛化误差的上界,即最小化模型的结构风险,从而提高了模型的泛化能力,这一优点在小样本学习中更为突出。SVM理论正是在这一基础上发展而来的,经过十几年的研究和发展,已开始逐步应用于一些领域。在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势,已经在模式识别、函数逼近和概率密度估计等方面取得了良好的效果。- Support
libsvm-3.22
- 支持向量机最优参数确定、支持向量机回归、分类(Optimal parameter determination of support vector machines)
libsvm-3.11
- 用于支持向量机的分类判别作用,是一个文件夹(Support vector machines for classification, discriminant function, is a folder)
libsvm-mat-2.89-3-[farutoFinalVersion]
- 支持向量机求解程序,下载后安装到工具箱,设置路径就能用了!(Support vector machine solution procedures, download and install to the toolbox, set the path can be used!)
支持向量机3
- 整理支持向量机的基本原理,便于分类、预测问题的解决。(Sort out the basic principle of support vector machines, easy to classify and predict the solution of problems.)
libsvm-3.12
- 多种语言版的支持向量机工具箱,matlab,python,c++,c,java,qt(Multi language version of support vector machine toolbox, MATLAB, python, c++, C, Java, QT)
支持向量机算法包
- SVR libsvm-3.1-[FarutoUltimate3.1Mcode](libsvm-3.1-[FarutoUltimate3.1Mcode])
opencv_SVM_Application_20180103
- 使用JNI ,cmake 方式 移植 opencv 3.3.1 中的SVM到安卓上,用于支持向量机的 监督分类 本地此目录下需要这个opencv的安卓SDK代码: set(OpenCV_DIR D:/Code_December_12/opencv-3.3.1-android-sdk/OpenCV-android-sdk/sdk/native/jni)(Using JNI, cmake transplant SVM to Android in the transplanted opencv 3
libsvm-3.21
- 支持向量机matlab程序包建立支持向量机模型,添加至路径即可(The support vector machine matlab package is built, and the support vector machine model is added to add to the path.)
libsvm-3.21
- 支持向量机工具箱,可以用来建立模型进行单分类。(Support Vector Machine Toolkit, which can be used to build models for single classification.)
python
- 该代码基于Python3,利用机器学习中支持向量机回归算法(SVR)实现对数据的拟合以及预测,可以通过调试C值和gamma值达到不同的拟合程度,具有较大的实际意义,并且该代码本人亲自调式运用,适合广大学习者使用。(This code is based on Python 3. It uses support vector machine regression algorithm (SVR) in machine learning to fit and predict the data. It c
libsvm-3.17
- 主要针对声品质预测模型使用的相关智能算法,包括支持向量机(SVM)和BP神经网络。(This paper mainly focuses on the relevant intelligent algorithms used in the sound quality prediction model, including support vector machine (SVM) and BP neural network.)